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Testing Big Data

Q: How to make sense of big data?

Q: How to understand properties looking only
at a small sample?

Q: How to ignore noise and outliers?

Q: How to minimize assumptions about the
sample generation process?

Q: How to optimize running time?
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Property Testing

[Goldreich, Goldwasser, Ron; Rubinfeld, Sudan]

Randomized Algorithm Property Tester

Accept with — Accept with
1o 2 . 2
probability > > YES probability >

e-close | = Don’t care
: : Reject with

_— Reject with . = » )
probability > - probability = -

e-close : < € fraction has to be changed to become YES
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Tolerant Property Testing

[Parnas, Ron, Rubinfeld]

Property Tester Tolerant Property Tester

= Accept with

Accept with
YES probability>> | YES b

probability > g

e-close | = Don’t care €,-close

= Reject with —> Don’t care
- 2
probability > 3 Reject with
probability > g

e-close : < € fraction has to be changed to become YES
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Tolerant “L{Property Testing”

f:{1,..,n} - [0,1]
P = class of monotone
functions

min|f —gl,
dist, (f, P) = 2=

n

e-close: dist;(f,P) < €

Tolerant “L, Property Tester”

YES

€,-close

Accept with

WIN

probability >

—> Don’t care

Reject with
probability > %



New L, -Testing Model for
Real-Valued Data

Generalizes standard Hamming testing

For p > O still has a probabilistic interpretation:

d,(f,g) = (E[If — glPD?

Compatible with existing PAC-style learning models
(preprocessing for model selection)

For Boolean functions, do(f, g) = d,,(f, g)P.



Our Contributions

1. Relationships between L,-testing models
2. Algorithms
— L,-testersforp = 1

* monotonicity, Lipschitz, convexity
— Tolerant L,-tester forp = 1

* monotonicity in 1D (sublinear algorithm for isotonic regression)

s Our L,-testers beat lower bounds for Hamming testers
*»*Simple algorithms backed up by involved analysis
*** Uniformly sampled (or easy to sample) data suffices

3. Nearly tight lower bounds

10



Implications for Hamming Testing

Some techniques/results carry over to Hamming testing

— Improvement on Levin’s work investment strategy
* Connectivity of bounded-degree graphs [Goldreich, Ron ‘02]
* Properties of images [Raskhodnikova ‘03]
* Multiple-input problems [Goldreich 13]

— First example of monotonicity testing problem where
adaptivity helps

— Improvements to Hamming testers for Boolean
functions

11



Definitions

f: D — [0,1] (D = finite domain/poset)
fll = CreplfCIIP)7, forp = 1

f o = Hamming weight (# of non-zero values)

Property P = class of functions (monotone,
convex, linear, Lipschitz, ...)

min [|f =gl
. ___ gEP
dist,(f,P) = TE




Relationships: L,-Testing

Q,(P,€) = query complexity of L,,-testing
property P at distance €

° Ql(P,E) < Q()(P,E)
* 04(P,e) < Q,(P,€) (Cauchy-Shwarz)

* Ql(P,E) = QZ(PI\/E)

Boolean functions f: D — {0,1}
QO(P/E) = QI(PIE) = QZ(PI\/E)



Relationships: Tolerant L,,-Testing

Q,(P,€1, €2) = query complexity of tolerant L ,-testing
property P with distance parameters €4, €5

* No general relationship between tolerant Lq-testing
and tolerant Hamming testing

* L,-testing for p > 1is close in complexity to L;-testing
Ql(Plgllji 82) = Qp(Piel; 82) = QI(PIEIJ 8129)

For Boolean functions f: D — {0,1}
1/p 1
Qo(P,£1, &) = Q1(P,£1, &2) = Qy(P,€,/7, &7 )



Testing Monotonicity

* Line (D = [n])

Upper O (logn/e) O(1/€)

[Ergun, Kannan, Kumar,

bound Rubinfeld,

Viswanathan’00]
Lower Q(logn/e) (A(1/€)
bO un d [Fischer’04]



Monotonicity

 Domain D=[n]? (vertices of d-dim hypercube)

* Afunction f: D — Ris monotone
if increasing a coordinate of x does
not decrease f(x).

 Specialcased =1 (111)
f:[n] = Ris monotone & f(1), ... f(n) is sorted.

One of the most studied properties in property testing (rgin

Kannan Kumar Rubinfeld Viswanathan , Goldreich Goldwasser Lehman Ron, Dodis Goldreich Lehman
Raskhodnikova Ron Samorodnitsky, Batu Rubinfeld White, Fischer Lehman Newman Raskhodnikova
Rubinfeld Samorodnitsky, Fischer, Halevy Kushilevitz, Bhattacharyya Grigorescu Jung Raskhodnikova
Woodruff, ..., Chakrabarty Seshadhri, Blais, Raskhodnikova Yaroslavtsev, Chakrabarty Dixit Jha Seshadhri]



Monotonicity: Key Lemma

* M = class of monotone functions

* Boolean slicing operator f,: D — {0,1}
fy(x) =1,if f(x) = y,
fy(x) = 0, otherwise.

e Theorem:

dist,(f, M) = [, disto(f,, M)dy




Proof sketch: slice and conquer

1) Closest monotone function with minimal L{-norm is
unique (can be denoted as an operator M}).

2) lIf —gll, = Iy — gyl dy
3) Mg and f, commute: (M})y = Ml(fy)

W {lr =Ml 2515 = eyl dy 3)
disty (f, M) = =5 D

f"l‘fy— 13’ 1,
o —= ] disty(f,, M)dy




L-Testers from Boolean Testers

Thm: A nonadaptive, 1-sided error L,-test for monotonicity of
f:D — {0,1}is also an L;-test for monotonicity of f: D — [0,1].
Proof: fx) > f®

* Aviolation (x,y): 0 -0 -0 -9

* A nonadaptive, 1-sided error test queries a randomset Q < D
and rejects iff ) contains a violation.

 If f:D — [0,1]is monotone, Q will not contain a violation.
 Ifdy(f,M) = ethen 3t :do(f (), M) = &€
* W.p. = 2/3, set Q contains a violation (x,y) for f
f(t*)(x) = 1:f(t*)(3’) =0
U

f)>fQy)



Our Results: Testing Monotonicity
d
)

* Hypergrid (D = [n]

dl d d
Upper 0( ogn) 0<—log—)
€ € €

bound [Dodis et al.’99,...,

Chakrabarti, Seshadhri ’13]

Lower o e N
€ € €

bo un d [Dodis et al.’99..., Non-adaptive 1-sided error
Chakrabarti, Seshadhri ’13]

« 20(d) /¢ adaptive tester for Boolean functions



Testing Monotonicity of [n]¢ — {0,1}

el = (0...1...0) = i-th unit vector.

Fori € [d], @ € [n]? where a; = 0 an axis-parallel line
along dimension i : {a + xiei‘xi € [n]}

d-1

L, 4= set of all dn”~" axis-parallel lines

Dimension reduction for f:[n]¢ — {0,1}[Dodis et al’99]:
. dist(f,M)
Etrtng [dlSt (f ‘{”M)] = 2d

If dist(fl,,M) = 8=>0 (%)-sample detects a violation




Testing Monotonicity on [n]?

Dimension reduction for f: [n]?¢ — {0,1}[Dodis et al’99]:

e, |dist (| ,m)| 2 distz({l, M)

If dist(f|,,M) = 8=>0 (%)-sample can detect a violation

“Inverse Markov”: Forr.v.X € [0,1] withE[X] = g andc < 1

— K K K u
PriX < cu] < - _Cu:Pr[XS—] <1-5—<1-5
2
Pr[dist(fl,, M) > 2] > B (L) test

[Dodis et al.] O (glog ;) via “Levin’s economical work

investment strategy” (used in other papers for testing
connectedness of a graph, properties of images, etc.)



Testing Monotonicity on [n]?

 “Discretized Inverse Markov”

Forr.v.X € [0,1] with E[X] = u < %and t =3log1/u

j
3j € [t]: Pr[X = 27| = %‘

1
p 2t

* Foreachi € [t] pick O (

1 1
~loo -
0 (u og u)
* For the good bucket j the test rejects with constant probability

dist(f,M) _

. d, d
© w=Epy, ldist(fle M) 2 ——=>0 (Z log;)-test

) samples of size 0(2) => complexity




Distance Approximation and Tolerant Testing

[n] - [0,1] 1)%/® 1
polylogn-(g) 0 52

[Saks Seshadhri 10]

e Sublinear algorithm for isotonic regression
* Time complexity of tolerant L;-testing for monotonicity is

€2
0 ((32 — 31)2>

— Better dependence than what follows from distance appoximation for
€ K1

~(1 : : L.
— Improves O (ﬁ) adaptive distance approximation of [Fattal,Ron’10] for
Boolean functions



Distance Approximation f: [n| — [0,1]

Theorem: with constant probability over the choice of
a random sample S of size O (52)

|dist, (fls, M) — dist,(f,M)| <6

Implies an O ( tolerant tester by setting

1
(ex—€4 )2)
5 = (62;61)

: 1 ..
dist,(f, M) = [, disto(f,, M)dy
Suffices: Vy: ‘disto(fyls ,M) — disto(fy, M)‘ <o
* Improves previous 0(1/62) algorithm [Fattal, Ron’10]



Distance Approximation

For f:[n] — {0,1} violation graph G¢([n], E):
edge (xq,x5)ifx; < x,, f(x1) =1,f(x,) =0

MM(G) = maximum matching
VC(G) = minimum vertex cover

o« disty(f,M) = |M171§Tf)| _ |Vﬁgﬁf)| [Fischer et al.02]

+ disto(fl, ) = Lns)| ")



disty(fls, M) — disty(f,M) < O (m)

Define: Y (S) = |VC|§?S|
. i _ Ve _ vegns| _
disty(fls, M) = ST s Y(S)

Y (S) has hypergeometric distribution:
eyl
D

|S||VCf| disto(f,M) _ 1

. VClT'[Y(S)] = |D||S|? o |S| _E

* E[Y(S)] = = disty(f, M)




L.-Testers for Other Properties

Via combinatorial characterization of L{-distance to the property

* Lipschitz property f:[n]?¢ - [0,1]:

()

Via (implicit) proper learning: approximate in L; up to error ¢,
test approximation on a random 0O (1/€)-sample

* Convexity f:[n]? - [0,1]:
4
O (e 2 + Z) (tight for d < 2)
e Submodularity f:{0,1}¢ - [0,1]
20(2) + poly ()10gd [Feldman, Vondrak 13]

€



Open Problems

* All our algorithms for for p > 1 were obtained directly from L-
testers.

Can one design better algorithms by working directly with L,,-distances?
* Our complexity for L, -testing convexity grows exponentially with d

Is there an L, -testing algorithm for convexity with subexponential
dependence on the dimension?

* Our L,-tester for monotonicity is nonadaptive, but we show that
adaptivity helps for Boolean range.

Is there a better adaptive tester?
 We designed tolerant tester only for monotonicity (d=1,2).
Tolerant testers for higher dimensions?
Other properties?



