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We present an O (
√

n log n)-approximation algorithm for the problem of finding the
sparsest spanner of a given directed graph G on n vertices. A spanner of a graph is a sparse
subgraph that approximately preserves distances in the original graph. More precisely,
given a graph G = (V , E) with nonnegative edge lengths d : E → R

�0 and a stretch k � 1,
a subgraph H = (V , E H ) is a k-spanner of G if for every edge (s, t) ∈ E , the graph H
contains a path from s to t of length at most k · d(s, t). The previous best approximation
ratio was Õ (n2/3), due to Dinitz and Krauthgamer (STOC ’11).
We also improve the approximation ratio for the important special case of directed
3-spanners with unit edge lengths from Õ (

√
n ) to O (n1/3 log n). The best previously known

algorithms for this problem are due to Berman, Raskhodnikova and Ruan (FSTTCS ’10) and
Dinitz and Krauthgamer. The approximation ratio of our algorithm almost matches Dinitz
and Krauthgamer’s lower bound for the integrality gap of a natural linear programming
relaxation. Our algorithm directly implies an O (n1/3 log n)-approximation for the 3-spanner
problem on undirected graphs with unit lengths. An easy O (

√
n )-approximation algorithm

for this problem has been the best known for decades.
Finally, we consider the Directed Steiner Forest problem: given a directed graph with edge
costs and a collection of ordered vertex pairs, find a minimum-cost subgraph that contains
a path between every prescribed pair. We obtain an approximation ratio of O (n2/3+ε)

for any constant ε > 0, which improves the O (nε · min(n4/5,m2/3)) ratio due to Feldman,
Kortsarz and Nutov (JCSS’12).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A spanner of a graph is a sparse subgraph that approximately preserves distances in the original graph. This notion was
first used by Awerbuch [2] and explicitly introduced by Peleg and Schäffer [3].

✩ A preliminary version of this paper appeared in the proceedings of ICALP 2011 (Berman et al., 2011, [1]).
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Definition 1.1 (k-Spanner). (See [2,3].) Given a graph G = (V , E) with nonnegative edge lengths d : E → R
�0 and a real

number k � 1, a subgraph H = (V , E H ) is a k-spanner of G if for all edges (s, t) ∈ E , the graph H contains a path from s
to t of length at most k · d(s, t). The parameter k is called the stretch.

Spanners have numerous applications, such as efficient routing [4–8], simulating synchronized protocols in unsynchro-
nized networks [9], parallel, distributed and streaming algorithms for approximating shortest paths [10–13], algorithms
for distance oracles [14,15], property testing, property reconstruction and key management in access control hierarchies
(see [16–18], the survey in [19] and references therein).

We study the computational problem of finding the sparsest k-spanner of a given directed graph G , that is, a k-spanner
of G with the smallest number of edges. We refer to this problem as Directed k-Spanner and distinguish between the case
of unit edge lengths (i.e., d(e) = 1 for all e ∈ E) and arbitrary edge lengths. The Undirected k-Spanner problem refers to
the task of finding the sparsest k-spanner of a given undirected graph. The natural reduction from Undirected k-Spanner

to Directed k-Spanner preserves the approximation ratio.
Our main results are an algorithm with approximation ratio O (

√
n log n) for Directed k-Spanner with arbitrary edge

lengths and an algorithm with approximation ratio O (n1/3 log n) for Directed 3-Spanner with unit edge lengths, where n
is the number of nodes in the input graph G . Our approximation guarantee for Directed 3-Spanner almost matches the
integrality gap of Ω(n1/3−ε) by Dinitz and Krauthgamer [20] for a natural linear programming relaxation of the problem.
Our result also directly implies the same approximation ratio for the Undirected 3-Spanner problem with unit edge lengths.

Our techniques also apply to the Directed Steiner Forest problem. Our result for this problem is discussed in Section 1.3.

1.1. Relation to previous work

Directed k-Spanner with unit edge lengths has been extensively studied. Note that in this case, we can assume that k is
a positive integer. For k = 2, the problem has been completely resolved: Kortsarz and Peleg [21] and Elkin and Peleg [22]
gave an O (log n)-approximation, and Kortsarz [23] proved that this approximation ratio cannot be improved unless P = NP.
Elkin and Peleg [24] gave an Õ (|E|1/3)-approximation for Directed 3-Spanner, which is an Õ (n2/3)-approximation for
dense graphs with Θ(n2) edges. For general k � 3, Bhattacharyya et al. [16] presented an Õ (n1−1/k)-approximation; then
Berman, Raskhodnikova and Ruan [25] improved it to Õ (n1−1/�k/2�), and recently Dinitz and Krauthgamer [20] gave Õ (n2/3)-
approximation, presenting the first algorithm with approximation ratio independent of k. For the special cases of k = 3 and
k = 4, Berman, Raskhodnikova and Ruan’s algorithm gives an Õ (

√
n )-approximation. Dinitz and Krauthgamer also gave an

Õ (
√

n )-approximation for the case k = 3, using different techniques than in [25]. Thus, our algorithms improve on [25] for
all k � 3, where k �= 4, and on [20] for all k � 3.

Dinitz and Krauthgamer’s algorithms also work for Directed k-Spanner with arbitrary edge lengths. For this case, one
can no longer assume that k is an integer. Dinitz and Krauthgamer achieved an Õ (n2/3)-approximation for all k > 1 and
Õ (

√
n ) for k = 3 for arbitrary edge lengths. We improve this approximation ratio to Õ (

√
n ) for all k > 1.

In contrast to the directed case, a simple approximation algorithm for Undirected k-Spanner was known for decades. For
all integer k � 3 and for all undirected graphs G with arbitrary edge lengths, a k-spanner can be constructed in polynomial
time by a greedy algorithm proposed by Althöfer, Das, Dobkin, Joseph and Soares [26]. It follows from the Moore bound for

irregular graphs by Alon, Hoory and Linial [27] that the graph constructed by this greedy algorithm has O (n1+ 1
�k/2� ) edges.

Since a k-spanner of a connected graph must have at least n − 1 edges, an approximation ratio O (n
1

�k/2� ) follows. Our result
improves the ratio for Undirected 3-Spanner from O (

√
n ) to Õ (n1/3) in the case of unit-length edges.

Elkin and Peleg [28,29], improving on [23], showed that it is quasi-NP-hard to approximate Directed k-Spanner, even
when restricted to unit edge lengths, with ratio better than 2log1−ε n for k ∈ (3,n1−δ) and all δ, ε ∈ (0,1). For Undirected

k-Spanner with unit-length edges, such a strong hardness result does not hold since the problem is O (1)-approximable
when k = Ω(log n).

1.2. Our techniques

Our algorithms operate by combining two graphs: the first obtained from randomized rounding of a fractional solution
to a linear programming relaxation of the problem and the second obtained by growing shortest-path trees from randomly
selected vertices. The idea of combining a linear programming approach with sampling of shortest-path trees to solve
Directed k-Spanner first appeared in [16]. Dinitz and Krauthgamer [20] used the same approach in their main algorithm
(for arbitrary stretch k), but with a novel, flow-based linear program (LP). In this paper, we propose alternative randomized
LP rounding schemes that lead to better approximation ratios. Sampling and randomized rounding has been previously used
by Kortsarz and Peleg [30] to construct undirected low-degree 2-spanners. In that work, the sampling step selects uniformly
random edges, and the LP is different from ours.

We also give new LP relaxations of Directed k-Spanner, slightly simpler than that in [20], although they describe the
same polytope. Our LP relaxation for the general case is stated in terms of antispanners, a graph object “dual” to spanners.
An antispanner for an edge (s, t) is a set of edges whose removal from the graph destroys all paths of stretch at most k
from s to t . Like in [20], our LP has a polynomial number of variables and an exponential number of constraints. We use the
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ellipsoid algorithm with a randomized separation oracle to solve it. In the case of unit edge lengths, we present a different
LP that has an extra advantage: it has a polynomial number of constraints and thus can be solved quickly without using the
ellipsoid algorithm. We apply two different rounding schemes to the fractional solution of this LP: one for general stretch,
another for stretch k = 3.

We note, however, that our method would yield the same approximation ratios with the LP of Dinitz and Krauth-
gamer [20] and, in the case of 3-spanners for graphs with unit edge lengths, with their rounding method as well. Dinitz
and Krauthgamer gave a separate algorithm for Directed 3-Spanner that uses randomized rounding, but does not combine
it with sampling. By combining with sampling, we obtain an algorithm with better approximation ratio for the case of unit
lengths. Our rounding method allows for simpler analysis.

1.3. Directed Steiner Forest

Finally, we apply our techniques to the Directed Steiner Forest (DSF) problem, a fundamental network design problem
on directed graphs. In this problem, the input is a directed graph G = (V , E) with edge costs and a collection D ⊆ V × V
of vertex pairs. The goal is to find a minimum-cost subgraph of G that contains a path from s to t for every pair (s, t) ∈ D .
DSF is an NP-hard problem and is known [31] to be quasi-NP-hard to approximate with ratio better than 2log1−ε n for all
ε ∈ (0,1). DSF is also known [32] to be as hard as MAX-REP, a basic problem used for hardness reductions, for which the
current best approximation ratio is O (n1/3) [33].

Previous to this work, the best known approximation ratio for DSF, independent of the size of D , was O (nε ·
min(n4/5,m2/3)) due to Feldman, Kortsarz and Nutov [32]. Their algorithm has the same structure as the algorithms for
Directed k-Spanner in [16,20]: it combines two graphs obtained, respectively, by sampling and solving an LP. In addition,
the LP relaxation they formulate is closely related to that developed by Dinitz and Krauthgamer, with edge costs replaced by
edge lengths. Our technique for the spanner problem also applies to the DSF problem, yielding an improved approximation
ratio of O (n2/3+ε) for any fixed ε > 0.

1.4. Organization

In Section 2, we explain the general outline of our algorithms, introduce antispanners and show how to find an Õ (n1/2)-
approximate solution to Directed k-Spanner in polynomial time. In Section 3, we present a more efficient algorithm for
the special case when all the edges of the graph are of unit length. In Section 4, we show the Õ (n1/3)-approximation for
Directed 3-Spanner with unit-length edges. Finally, Section 5 describes the O (n2/3+ε)-approximation for Directed Steiner

Forest. In Section 6 we give a conclusion and directions for future work.

2. An Õ (
√

n )-approximation for DIRECTED k-SPANNER

Our first result is stated in the following theorem.

Theorem 2.1. There is a polynomial time randomized algorithm for Directed k-Spanner with expected approximation ratio
O (

√
n log n).

All algorithms in this paper have the same structure. They break the problem into two parts and obtain separate solutions
to each part: one by random sampling and the other by randomized rounding of a solution to a linear program. We start
by explaining how we break Directed k-Spanner into two parts. In Section 2.1, we describe how to obtain a solution to
the first part using random sampling. Section 2.2 describes our randomized rounding scheme for Directed k-Spanner. In
Section 2.3, we introduce antispanners, a graph object used to formulate and analyze our linear programming relaxations. In
Section 2.4, we formulate our linear programming relaxation and separation oracle, and finish the description and analysis
of the algorithm, completing the proof of Theorem 2.1.

Let G = (V , E) be a directed graph with edge lengths d : E → R
�0, given as an input to our algorithm, and OPT be the

size of its sparsest k-spanner. We assume that G is weakly connected. Otherwise, our algorithm should be executed for each
weakly connected component separately.

Definition 2.1 (Local graph Gs,t ). For an edge (s, t) ∈ E , let Gs,t = (V s,t , Es,t) be the subgraph of G induced by the vertices
that belong to paths from s to t of length at most k · d(s, t).

We classify edges according to the sizes of their local graphs.

Definition 2.2 (Thick and thin edges). Let β be a parameter in [1,n]. If |V s,t | � n/β , the corresponding edge (s, t) is thick, and
otherwise, it is thin. The set of all thin edges is denoted by E. In Sections 2.1–3, we set β = √

n and in Section 4, β = n1/3.

Definition 2.3. A set E ′ ⊆ E settles an edge (s, t) ∈ E if (V , E ′) satisfies the k-spanner property for this edge, i.e., it contains
a path of length at most k · d(s, t) from s to t .
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Our algorithm must find a small subset of edges that settles all edges in E . To accomplish this, it finds two subsets of
edges, E ′ and E ′′ , such that E ′ settles all thick edges and E ′′ settles all thin edges. The output of the algorithm is (V , E ′ ∪ E ′′).

2.1. Sampling

The following procedure uses random sampling to construct an edge set E ′ that settles all thick edges. Recall that an in-
arborescence is a directed rooted tree where all edges are oriented towards the root; an out-arborescence is defined similarly.

Algorithm 1 Sample(β)
1: E ′ ← ∅, S ←∅;
2: for i = 1 to β lnn do
3: v ← a uniformly random element of V ;
4: T in

v ← a shortest path in-arborescence rooted at v;
5: T out

v ← a shortest path out-arborescence rooted at v;
6: E ′ ← E ′ ∪ T in

v ∪ T out
v , S ← S ∪ {v}; //Set S is used only in the analysis;

7: end for
8: Add all unsettled thick edges to E ′;
9: return E ′ .

Lemma 2.2. Algorithm 1, in polynomial time, computes a set E ′ that settles all thick edges and has expected size at most 3β ln n · OPT.

Proof. After the execution of the for-loop in Algorithm 1, |E ′| � 2(n − 1)β ln n � 2β ln n · OPT . The last inequality holds
because OPT � n − 1 for weakly connected graphs G .

If some vertex v from a set V s,t appears in the set S of vertices selected by Sample, then T in
v and T out

v contain shortest
paths from s to v and from v to t , respectively. Thus, both paths are contained in E ′ . Since v ∈ V s,t , the sum of lengths of
these two paths is at most k · d(s, t). Therefore, if S ∩ V s,t �=∅, then the edge (s, t) is settled. For a thick edge (s, t), the set
S ∩ V s,t is empty with probability at most (1 − 1/β)β lnn � e− lnn = 1/n. Thus, the expected number of unsettled thick edges
added to E ′ in Step 8 of Sample is at most |E|/n � n − 1 � OPT .

Step 8 ensures that the set E ′ , returned by the algorithm, settles all thick edges. Computing shortest path in- and out-
arborescences and determining whether an edge is thick can be done in polynomial time. �
2.2. Randomized rounding

To obtain a set E ′′ that settles all thin edges, each of our algorithms solves a linear program and rounds the resulting
fractional solution. The LP is a relaxation of Directed k-Spanner for the set of all thin edges. It has a variable xe and a
constraint xe � 0 for each edge e ∈ E . The variable xe in the corresponding optimal {0,1}-solution indicates whether the
edge e is present in the smallest spanner for all thin edges. The following randomized rounding procedure is used in our
algorithms for Directed k-Spanner, both for arbitrary and for unit lengths. As an input it gets a fractional vector {x̂e} with
nonnegative entries.

Algorithm 2 RandomizedSelection(x̂e)
1: E ′′ ←∅;
2: for each edge e ∈ E do
3: Add e to E ′′ with probability min(

√
n lnn · x̂e,1);

4: end for
5: return E ′′ .

The following proposition shows that if the sum of values assigned by {x̂e} to edges in some A ⊆ E is at least 1 then E ′′
intersects A with high probability.

Claim 2.3. Let A ⊆ E. If Algorithm 2 receives a fractional vector {x̂e} with nonnegative entries satisfying
∑

e∈A x̂e � 1, the probability
that it outputs a set E ′′ disjoint from A is at most exp(−√

n ln n).

Proof. If A contains an edge e, such that x̂e � (
√

n ln n)−1, then e ∈ E ′′ with probability 1. That is, E ′′ is never disjoint
from A.

Otherwise, for all edges e ∈ A, the probability that e ∈ E ′′ is exactly
√

n ln n · x̂e . The probability that no edges of A are
in E ′′ is, therefore,

∏
(1 − √

n lnn · x̂e) � exp

(
−

∑√
n lnn · x̂e

)
� exp(−√

n lnn).
e∈A e∈A
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The first inequality above follows from the fact that 1 − x � exp(−x) for x � 0. The second one holds because∑
e∈A x̂e � 1. �

2.3. Antispanners

In this section, we introduce antispanners, a graph object used in the description of our LP for Directed k-Spanner and
crucial in the analysis of the parts of our algorithms that settle thin edges. After giving the definition, we show how to
construct minimal antispanners (in Claim 2.4) and give an upper bound on their number (in Claim 2.5).

For a given edge (s, t), we define an antispanner to be a subset of edges of G , such that if we remove this subset of
edges from G , the length of the shortest path from s to t becomes larger than k · d(s, t).

Definition 2.4 (Antispanner). A set A ⊆ E is an antispanner for an edge (s, t) ∈ E if (V , E \ A) contains no path from s to t
of length at most k · d(s, t). If no proper subset of an antispanner A for (s, t) is an antispanner for (s, t) then A is minimal.
The set of all minimal antispanners for all thin edges is denoted by A.

The edge set of a k-spanner of G must intersect all antispanners for all edges of G . In other words, it has to be a
hitting set for all minimal antispanners. Specifically, a set E ′′ that settles all thin edges must be a hitting set for all minimal
antispanners in A. We now prove that if a set E ′′ does not settle some thin edge, then we can efficiently find a minimal
antispanner A ∈A disjoint from E ′′ .

Claim 2.4. There exists a polynomial time algorithm that, given a set of edges E ′′ ⊂ E that does not settle some thin edge, outputs a
minimal antispanner A ∈A for some thin edge, such that A ⊆ E \ E ′′ .

Proof. The algorithm first finds a thin edge (s, t) with no directed path from s to t of length at most k · d(s, t) in E ′′ . Recall
that all paths from s to t of length at most k · d(s, t) in G lie in the local graph Gs,t = (V s,t, Es,t). (See Definition 2.1.)
Therefore, Es,t \ E ′′ is an antispanner for (s, t). The algorithm sets A = Es,t \ E ′′ and then greedily deletes edges e from A
while A \ {e} is an antispanner, that is, while (V s,t , Es,t \ A) contains no paths of length at most k · d(s, t) from s to t . When
no more such edges can be deleted, the algorithm returns A. �

Next, we give an upper bound on the number of minimal antispanners for thin edges.

Claim 2.5. |A| � |E| · (n/β)n/β . In particular, if β = √
n, then |A| � √

n
√

n+4
.

Proof. Fix a thin edge (s, t) and a minimal antispanner A for (s, t). Let T A be an out-arborescence (shortest-path tree)
rooted at s in the graph (V s,t , Es,t \ A). Denote by dT A (u) the distance from s to u in the tree T A . If T A contains no directed
path from s to u, let dT A (u) = ∞. We show that A = {(u, v) ∈ Es,t : dT A (u) + d(u, v) < dT A (v)}, and thus T A uniquely
determines A for a given thin edge (s, t).

Consider an edge (u, v) ∈ A, and let A− denote A \ {(u, v)}. Since the antispanner A is minimal, the graph (V , E \ A−)

contains a path from s to t of length at most k · d(s, t). This path must lie in (V s,t, Es,t \ A−) and must contain the edge
(u, v). Thus, the distance from s to t in the graph (V s,t , Es,t \ A−) is at most k · d(s, t) and is strictly less than dT A (t). Hence,
T A is not a shortest-path tree in the graph (V s,t , Es,t \ A−). Therefore, dT A (u) + d(u, v) < dT A (v).

If (u, v) ∈ Es,t satisfies the condition dT A (u) + d(u, v) < dT A (v), then (u, v) /∈ Es,t \ A; otherwise, T A would not be a
shortest-path tree. Hence, (u, v) ∈ A.

We now count the number of out-arborescences rooted at s in (V s,t, Es,t \ A). For every vertex u ∈ V s,t , we may choose
the parent vertex in at most |V s,t | possible ways (if a vertex is a not reachable from s, we choose it as its own parent).
Thus, the total number of trees is at most |V s,t ||V s,t | � (n/β)n/β .

Since there are at most |E| thin edges, the claim follows. �
2.4. LP, separation oracle and overall algorithm

In this section, we describe a randomized algorithm for constructing a small subset of edges E ′′ ⊆ E that settles all thin
edges. First, we formulate an LP relaxation of this problem. Then we describe how to solve it using the ellipsoid method with
a separation oracle (Section 2.4.1). Finally, in Section 2.4.2, we summarize the resulting algorithm for Directed k-Spanner

and complete the proof of Theorem 2.1.
A set E ′′ that settles must intersect all minimal antispanners for all thin edges. This condition can be expressed using

linear program LP-A (see Fig. 1). LP-A has a variable xe for each edge e ∈ E and a constraint (2) for each minimal antispan-
ner A for every thin edge. Recall that A is the set of all minimal antispanners for thin edges. In the integral solution {xint

e }
corresponding to a k-spanner with an edge set E ′′ ⊆ E , we set xint

e = 1 if e ∈ E ′′ and xint
e = 0 otherwise. All constraints in (2)

are satisfied for {xint
e } since E ′′ intersects every antispanner. The value of the objective function

∑
e xint

e is equal to the size
of E ′′ . Hence, LP-A is a relaxation of Directed k-Spanner.
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Minimize
∑
e∈E

xe subject to: (1)

∑
e∈A

xe � 1 ∀A ∈ A (2)

xe � 0 ∀e ∈ E (3)

Fig. 1. Linear program for the arbitrary-length case, LP-A. A is the set of all minimal antispanners for thin edges.

For ease of presentation, we assume that we have guessed OPT , the size of the sparsest spanner. (We can try all values
in {n − 1, . . . ,n2} for OPT and output the sparsest spanner found in all iterations). We replace the objective function (1)
with

∑
e∈E

xe � OPT, (4)

and call the resulting linear program LP-A′ .

2.4.1. Separation oracle
LP-A′ has a polynomial number of variables and, by Claim 2.5, an exponential in Õ (

√
n ) number of constraints. We solve

it using the ellipsoid algorithm with a separation oracle. Our separation oracle receives a fractional vector {x̂e}, satisfying (3)
and (4). If {x̂e} is a feasible solution to LP-A′ , then the separation oracle outputs a set E ′′ of size at most 2OPT · √

n ln n,
which settles thin edges. Otherwise, it outputs either a set E ′′ with the same guarantee or a violated constraint from (2)
for some antispanner A. The separation oracle can also fail with small probability. If it happens during an execution of the
ellipsoid algorithm, we output the input graph with all its edges as a k-spanner.

Algorithm 3 SeparationOracle(x̂e)
1: //Sample a random set of edges E ′′ , picking each e ∈ E

//with probability min(x̂e
√

n lnn,1) (see Algorithm 2);
E ′′ ← RandomizedSelection(x̂e)

2: if E ′′ settles all thin edges then
3: if |E ′′| � 2OPT · √n lnn then return E ′′;
4: else fail;
5: else
6: Find an antispanner A ⊆ E \ E ′′ from A using the algorithm from Claim 2.4;
7: if

∑
e∈A xe < 1 then return violated constraint

∑
e∈A xe � 1;

8: else fail;
9: end if

The separation oracle is described in Algorithm 3. Next we analyze the probability that the separation oracle fails.

Lemma 2.6. The probability that the separation oracle fails during an execution of the ellipsoid algorithm is exponentially small in n.

Proof. The separation oracle can fail for two reasons:

1. The size of the sampled set E ′′ is too large.
2. The minimal antispanner A found by the oracle does not correspond to a violated constraint.

To analyze the probability of the first event, note that the expected size of E ′′ is at most
√

n ln n
∑

e∈E xe � OPT · √n ln n.
By the Chernoff bound,

Pr
[∣∣E ′′∣∣ > 2OPT · √n lnn

]
� exp(−c · OPT · √n lnn) = exp

(−Ω(n
√

n lnn)
)
.

Thus, the probability that the separation oracle fails because |E ′′| > 2OPT · √n ln n is exponentially small in n.
To analyze the probability of the second event, consider one call to the separation oracle. Fix a minimal antispanner A

satisfying
∑

e∈A x̂e � 1. Claim 2.3 shows that the probability that E ′′ is disjoint from A is at most exp(−√
n ln n). Claim 2.5

demonstrates that |A| �
√

n
√

n+4. Therefore, by a union bound, the probability that there is a minimal antispanner A ∈ A

satisfying
∑

e∈A x̂e � 1 and also disjoint from E ′′ is at most
√

n
√

n+4 · exp(−√
n ln n) = exp(− 1

2

√
n lnn + 2 ln n). Thus, the

probability that the separation oracle fails during one call because
∑

e∈A x̂e � 1 is exponentially small in n. Since the number
of iterations of the ellipsoid algorithm is polynomial in n, a union bound over all iterations gives that the overall probability
that the separation oracle fails during an execution of the ellipsoid algorithm is exponentially small in n. �



P. Berman et al. / Information and Computation 222 (2013) 93–107 99
Minimize
∑
e∈E

xe subject to:

Flow requirement
∑

e0∈Out(s0)

f s,t
e0

� 1 ∀(s, t) ∈ E

Flow conservation
∑

ei−1∈In(vi )

f s,t
ei−1

−
∑

ei∈Out(vi )

f s,t
ei

= 0 ∀(s, t) ∈ E, ∀vi ∈ V̄ s,t \ {s̄, t̄}

Capacity constraints xe −
k−1∑
i=0

f s,t
ei

� 0 ∀(s, t) ∈ E, ∀e ∈ E

xe � 0 ∀e ∈ E

f s,t
ei

� 0 ∀(s, t) ∈ E, ∀ei ∈ Ē s,t

Fig. 2. Linear program for the unit-length case, LP-U.

Lemma 2.6 implies, in particular, that when the separation oracle is given a feasible solution to LP-A′ , it fails to output a
set E ′′ with exponentially small probability. Since E ′′ is obtained by running Algorithm 2, we obtain the following corollary
that will be used in Section 3.

Corollary 2.7. Given a feasible solution to LP-A′ , Algorithm 2 with all but exponentially small probability produces a set E ′′ that settles
thin edges and has size at most 2OPT · √n ln n.

2.4.2. Overall algorithm for Directed k-Spanner

Proof of Theorem 2.1. We settle thick edges by running Sample(
√

n ), according to Lemma 2.2. We settle thin edges by
running the ellipsoid algorithm as described in the beginning of Section 2.4 and Section 2.4.1. If the separation oracle fails,
which, by Lemma 2.6, happens with exponentially small probability, we output a spanner containing all edges E . Thus,
the expected size of the set E ′′ is at most 2OPT · √n ln n + o(1), and the resulting approximation ratio of the algorithm is
O (

√
n ln n). The ellipsoid algorithm terminates in polynomial time, so the overall running time is polynomial. �

3. LP and rounding for graphs with unit-length edges

In this section, we describe how to settle all thin edges, and thus prove Theorem 2.1, for the case of unit-length edges.
Our motivation for presenting this special case is two-fold. First, we show that for the unit-length case, one can directly
formulate a polynomial-sized LP relaxation, and this makes the approximation algorithm more efficient. Second, we also use
the LP from this section to present a better algorithm for 3-spanners in Section 4.

Our LP for the case of unit lengths, LP-U, is stated in terms of local layered graphs which we introduce next.

Definition 3.1 (Layered expansion). Given a directed graph G = (V , E), its layered expansion is a directed graph Ḡ = (V̄ , Ē),
satisfying the following:

1. Let V̄ = {vi: v ∈ V and i ∈ Z
�0}, where vi denotes the i-th copy of v . The set of all the i-th copies of nodes in V is

the i-th layer of V̄ .
2. Let L = {(u, u): u ∈ V } be the set of loops. Define the i-th copy of an edge e = (u, v) to be ei = (ui, vi+1), and the i-th

copy of a loop e = (u, u) to be ei = (ui, ui+1). Let Ē = {ei: e ∈ E ∪ L and i ∈ Z
�0}.

Layered expansion Ḡ contains a path from s0 to tk if and only if G contains a path from s to t of length at most k.
A local layered graph for a thin edge (s, t) is defined next. It consists of all paths in the layered expansion Ḡ that correspond
to paths from s to t of length at most k in the original graph G or, in other words, to paths in the local graph Gs,t , defined
in Definition 2.1.

Definition 3.2 (Local layered graph). For a thin edge (s, t) and k � 1, the local layered graph is a subgraph Ḡs,t = (V̄ s,t, Ē s,t)

of Ḡ with a source s̄ = s0 and a sink t̄ = tk , such that Ḡs,t contains all nodes and edges on paths from s̄ to t̄ .

Our algorithm solves the linear program LP-U defined in Fig. 2. Recall that E denotes the set of thin edges. LP-U has
variables of two types: xe , where e ∈ E , and f s,t

ei
, where (s, t) ∈ E and ei ∈ Ē s,t . A variable xe represents whether the edge e

is included in the k-spanner. We think of a path from s to t of length at most k in G as a unit flow from s̄ to t̄ in Ḡs,t .
A variable f s,t

ei
represents flow along the edge ei in Ḡs,t . We denote the sets of incoming and outgoing edges for a vertex

vi ∈ Ḡs,t by In(vi) and Out(vi), respectively.
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Given x̂e , a fractional solution of LP-U, we construct the set E ′′ by first running Algorithm 2 and then adding all unsettled
thin edges.

Lemma 3.1. The algorithm described above, in polynomial time, computes a set E ′′ that settles all thin edges and has expected size at
most 2

√
n ln n · OPT + o(1).

Proof. We prove, in Claim 3.2, that in a fractional optimal solution {x̂e} ∪ { f̂ s,t
ei

} to LP-U, the vector {x̂e} is a fractional
solution to LP-A′ . Then we apply Corollary 2.7 to get the desired bound on the expected size of E ′′ . At the end, we argue
that the algorithm runs in polynomial time.

Claim 3.2. In a fractional optimal solution {x̂e} ∪ { f̂ s,t
ei

} to LP-U, the vector {x̂e} is a fractional solution to LP-A′ .

Proof. First, we argue that LP-U is a relaxation of Directed k-Spanner for the unit-length case or, in other words, that an
optimal solution to this program has value at most OPT . Let H be a sparsest k-spanner of G . Assign xe = 1 if e is in H and
xe = 0 otherwise. For each thin edge (s, t), consider a simple path from s to t in H of length �, where � � k. Set f s,t

ei
to 1

if either e is the i-th edge on that path or i ∈ {� + 1, . . . ,k} and ei = (ti−1, ti); otherwise, set it to 0. Since the resulting
assignment is a feasible solution to LP-U, the optimal solution to this program has value

∑
e∈E x̂e � OPT .

Next, we argue that if {x̂e} ∪ { f̂ s,t
ei

} is a feasible solution to LP-U then {x̂e} satisfies the antispanner constraints for LP-A′ ,
given in (2). Consider a thin edge (s, t) and a minimal antispanner A ∈ A for (s, t). Let Ā = {ei: e ∈ A and ei ∈ Ē s,t} be the
set of copies of the edges in A in the local layered graph. Let S̄ ⊆ V̄ s,t be the set of nodes that can be reached from s̄ in
(V̄ s,t, Ē s,t \ Ā) and T̄ = V̄ s,t \ S̄ be the set of the remaining nodes. Since A is an antispanner for (s, t), node t̄ is in T̄ , and
thus ( S̄, T̄ ) is an (s̄, t̄) cut in Ḡs,t . Note that only edges from Ā can cross the cut because for an edge (ui, vi+1) /∈ Ā if ui is
reachable from s̄ then so is vi+1.

For a fractional solution {x̂e} ∪ { f̂ s,t
ei

} to LP-U,

∑
e∈A

x̂e �
∑
e∈A

k−1∑
i=0

f̂ s,t
ei

=
∑
ei∈ Ā

f̂ s,t
ei

�
∑

ei∈cut( S̄,T̄ )

f̂ s,t
ei

=
∑

e0∈O ut(s0)

f̂ s,t
e0

� 1. (5)

The first inequality above follows from the capacity constraints in LP-U, the following equality holds by definition of Ā, the
second inequality holds because Ā contains the edges in the cut ( S̄, T̄ ), the last equality follows from the flow conservation,
and the last inequality is the flow requirement.

We proved that in a fractional optimal solution {x̂e} ∪ { f̂ s,t
ei

} to LP-U, the vector {x̂e} satisfies constraints (2) and (4) of
LP-A′ . Since constraints (3) are also in LP-U, vector {x̂e} is a fractional solution to LP-A′ . �

By, Claim 3.2, vector {x̂e} is a fractional solution to LP-A′ . Corollary 2.7 says that, given such a solution, Algorithm 2 with
all but exponentially small probability produces a set E ′′ that settles thin edges and has size at most 2OPT · √n ln n. After
we add all unsettled thin edges, the expected size of the resulting set E ′′ is at most 2OPT · √n ln n + o(1).

It remains to argue that the described algorithm takes polynomial time. To write down LP-U, we only need to know V ,
E , k and the set of thin edges, E. The first three are inputs to the algorithm, and E can be computed in polynomial time.
LP-U can be written down and solved in polynomial time because it has O (|E|2 · k) = O (n5) variables and constraints. �
Proof of Theorem 2.1 for the case of unit-lengths. We run Algorithm 1 to get E ′ . We construct E ′′ by running Algorithm 2
and adding all unsettled thin edges. Let the edge set of our k-spanner be E ′ ∪ E ′′ . By Lemmas 2.2 and 3.1, E ′ settles all
thick edges, E ′′ settles all thin edges, the expected size of E ′ ∪ E ′′ is O (

√
n ln n · OPT), and the resulting algorithm runs in

polynomial time, as required. �
4. An Õ (n1/3)-approximation for DIRECTED 3-SPANNER with unit-length edges

In this section, we show an improved approximation for the special case of Directed 3-Spanner with unit-length edges.
The algorithm follows the general strategy explained in Section 2. The LP rounding scheme here is different from that pre-
sented in Section 2.2 and used in the two algorithms for Directed k-Spanner in Sections 2 and 3. We note that Algorithm 2
from [20] with ρ = Θ̃(n1/3) could also be used to prove our result. The rounding scheme we present is simpler and allows
for simpler analysis.

As in [20], we use random variables for vertices instead of edges to guide edge selection process. Intuitively, this allows
us to introduce positive correlations in selection of edges adjacent to the same vertex. Because the correlations are local,
the improvement in approximation deteriorates for larger values of k. To simplify analysis, instead of threshold rounding (as
in the previous sections) we use Poisson random variables.

Theorem 4.1. There is a polynomial time randomized algorithm for Directed 3-Spanner for graphs with unit edge lengths with
expected approximation ratio O (n1/3 logn).
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Proof. We define thick and thin edges as in Definition 2.2, with β = n1/3, and run Sample(n1/3). By Lemma 2.2, the resulting
edge set E ′ settles all thick edges and has expected size at most 3n1/3 ln n · OPT . Then we obtain an optimal solution
{x̊e} ∪ { f̊ s,t

ei
} of the linear program LP-U from Fig. 2. Our rounding scheme is stated in Algorithm 4. It consists of two stages:

first, we round {x̊e} to obtain a new solution {x̂e}, where every assignment x̂e is an integer multiple of n−2/3; second, we
round {x̂e} to obtain an edge set E ′′ that settles all thin edges with high probability.

In the first step we sample a random variable from Poisson distribution for every edge. Recall, that a Poisson random
variable X with mean λ is supported over nonnegative integers and has a probability density function:

Pr[X = k] = λke−λ

k! , ∀k ∈ Z
�0.

The only properties of the Poisson distribution that we use in the analysis are concentration bound stated in Appendix A,
integrality of the support and the fact that the sum of Poisson random variables is again a Poisson random variable.

Algorithm 4 Randomized3SpannerSelection(x̊e)
1: E ′′ ←∅;

//Obtain a new solution {x̂e}, where each coordinate x̂e is a multiple of n−2/3:
2: for each edge e ∈ E do
3: Pe ← sample from the Poisson distribution with mean λe = 6n2/3 x̊e ;
4: x̂e ← Pen−2/3;
5: end for

//Round {x̂e} to get E ′′:
6: for each vertex u ∈ V do
7: ru ← uniform sample from (0,1);
8: end for
9: for each edge e = (u, v) ∈ E do

10: if min(ru , rv ) � x̂eαn1/3 lnn then add e to E ′′;
11: //α > 1 is an absolute constant
12: end for
13: return E ′′ .

Lemma 4.2 below analyzes the first stage. Then Lemmas 4.3 and 4.4 analyze the set E ′′ produced by the second stage.
Lemma 4.3 bounds the expected size of E ′′ by O (OPTn1/3 ln n). Lemma 4.4 shows that E ′′ settles a given thin edge with
probability at least 1 − 1/n. Consequently, the expected number of unsettled thin edges is at most |E|/n � n − 1 � OPT , and
they can be added to the solution without affecting the approximation ratio. This completes the proof of Theorem 4.1. �

It remains to prove the lemmas that were used in the proof of Theorem 4.1.
Recall that s̄ and t̄ are used to denote the source and the sink the local layered graph of an edge (s, t) as in Definition 3.2.

Lemma 4.2. Given a feasible solution {x̊e} ∪ { f̊ s,t
ei

} of LP-U of cost LP, Algorithm 4 on lines 2–5 computes a vector {x̂e} of cost at most
20LP (i.e., satisfying

∑
e x̂e � 20LP) such that all x̂e are integer multiples of n−2/3 . Moreover, for every thin edge (s, t) and cut ( S̄, T̄ )

in the local layered graph Ḡs,t with s̄, s1 ∈ S̄ and t2, t̄ ∈ T̄ , vector {x̂e} satisfies∑
(u,v)∈Es,t : (ui ,vi+1)∈ S̄×T̄

x̂(u,v) � 1. (6)

This stage of the algorithm succeeds with probability 1 − exp(−cn2/3) for some constant c > 0.

Proof. For every edge e, we independently sample a Poisson random variable Pe with mean λe = 6n2/3 x̊e , and set x̂e =
Pen−2/3. Since the support of the Poisson distribution is on nonnegative integers, all x̂e are integer multiples of n−2/3. We
need to verify that x̂e satisfies (6) and that its cost is bounded by 20LP.

Fix a thin edge (s, t) and a cut ( S̄, T̄ ) in Ḡs,t with s̄, s1 ∈ S and t2, t̄ ∈ T . Let A = {(u, v) ∈ Es,t : (ui, vi+1) ∈ S̄ × T̄ }. We
will show that it is an antispanner for (s, t). For every path p = s → u → v → t of length 3 in Gs,t , one of the edges on
the path s̄ → u1 → v2 → t̄ crosses the cut ( S̄, T̄ ) and, consequently, one of the edges of p belongs to A. Similarly, for every
path p = s → u → t of length 2 (respectively, path p = s → t of length 1) one of the edges on the path s̄ → u1 → t2 → t̄
(respectively, path s̄ → s1 → t2 → t̄) crosses the cut ( S̄, T̄ ), and one of the edges of p belongs to A. Therefore, A is an
antispanner for (s, t). By Claim 3.2, if {x̊e}∪{ f̊ s,t

ei
} is a feasible solution to LP-U then {x̊e} satisfies the antispanner constraints

for LP-A′ , given in (2). That is,
∑

e∈A x̊e � 1.
Next, we bound

∑
e∈A x̂e = n−2/3 ∑

e∈A Pe . The sum
∑

e∈A Pe is distributed as a Poisson random variable with mean
λA = ∑

e∈A λe � 6n2/3. By Lemma A.1 in Appendix A,

Pr

[∑
x̂e < 1

]
= Pr

[∑
Pe < n2/3

]
� Pr

[∑
Pe � 6/e · n2/3

]
� exp

(−6n2/3/4
)
.

e∈A e∈A e∈A
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Since (s, t) is a thin edge, |V̄ s,t \{s̄, t̄}| � 2n2/3, and the number of cuts ( S̄, T̄ ) in V̄ s,t separating s̄ and t̄ is at most 22n2/3 =
exp(ln 4 · n2/3). Hence, by a union bound, (6) holds for all such cuts simultaneously with probability at least 1 − e−cn2/3

,
where c = 6/4 − ln 4 > 0. By a union bound, the previous sentence is true for all thin edges (s, t) simultaneously with a
constant if c is set to c/2 = 1

2 (6/4 − ln 4).
Finally, observe that the cost of {x̂e} is n−2/3 × ∑

e∈E Pe . The sum
∑

e∈E Pe is a Poisson random variable with mean
6n2/3 ∑

x̊e = 6n2/3LP. By Lemma A.1,

Pr

[∑
e∈E

Pe � 20n2/3LP

]
� Pr

[∑
e∈E

Pe � 6 · e · n2/3LP

]
� exp

(−6n2/3LP
)
� exp

(−6n2/3).

Thus, the probability that the cost of {x̂e} exceeds 20LP is exponentially small. �
Lemma 4.3. (Analog of Lemma 4.1 in [20].) E[|E ′′|] = O (OPTn1/3 ln n).

Proof. By a union bound, the probability that an edge e belongs to E ′′ is at most 2x̂eαn1/3 ln n. Therefore, since α is a
constant,

E
[∣∣E ′′∣∣] �

∑
e∈E

2x̂eαn1/3 lnn = O
(
OPTn1/3 lnn

)
. �

Lemma 4.4. (Analog of Lemma 4.2 in [20].) If (s, t) is a thin edge for which condition (6) holds, then E ′′ settles (s, t) with probability
at least 1 − 1/n.

Proof. Fix a thin edge (s, t). Let

Ē ′′ = {
ei: e ∈ E ′′ and ei ∈ Ē s,t} ∪ {

(s̄, s1), (t2, t̄)
}

be the set of copies of the edges in E ′′ in the local layered graph Ḡs,t . We show that, with probability at least 1 − 1/n, there
is a path from s̄ to t̄ in (V̄ s,t, Ē ′′) and, consequently, the edge (s, t) is settled.

Let { f̂ s,t
ei

} be the maximum flow from s̄ to t̄ in the graph Ḡs,t with capacities x̂ei set to x̂(u,v) on edges ei = (ui, vi+1)

for u �= v , infinite capacities (x̂ei = ∞) on edges ei ∈ {(s̄, s1), (t2, t̄)} and zero capacities (x̂ei = 0) on edges ei = (ui, ui+1) for
ei /∈ {(s̄, s1), (t2, t̄)}. Note that this flow may be different from the flow { f̊ s,t

ei
} obtained by LP-U. By (6), the capacity of the

minimum cut between s̄ and t̄ is at least 1. Thus, the value of the flow { f̂ s,t
ei

} is at least 1.
In the simplest case, the flow is routed along n2/3 disjoint paths of capacity n−2/3 each. The probability that a given path

s̄ → u1 → v2 → t̄ belongs to (V̄ s,t , Ē ′′) is at least Pr[ru � αn−1/3 ln n and rv � αn−1/3 ln n] � (αn−1/3 ln n)2. The probability
that at least one path belongs to Ē ′′ is 1 − (1 − α2n−2/3 ln2 n)n2/3

> 1 − 1/n. In the general case, however, we need a more
involved analysis.

To analyze the general case, we partition the set V s,t into two disjoint sets S and T such that at least 1/4 units of flow
{ f̂ s,t

ei
} are routed along the paths s̄ → u1 → v2 → t̄ , where u ∈ S and v ∈ T . To see that such a partition exists, randomly

add every vertex in V s,t \ {s, t} to S or T with probability 1/2. Add s to S and t to T . Then for every path s̄ → u1 → v2 → t̄
(where u �= v), Pr[u ∈ S and v ∈ T ] � 1/4, so the expected contribution of every path to the new flow is at least 1/4 of the
original flow over the path. Because the total new flow from s̄ to t̄ can be represented as a sum of flows over such paths,
the expected flow routed from s̄ to t̄ through S and T (as described above) is at least 1/4. That is, for at least one partition
(S, T ) the flow is at least 1/4. Fix this partition.

Let { fei } be the maximum flow in Ḡs,t (with the same capacities as above) routed from s̄ to t̄ through S and T , such
that all fei are multiples of n−2/3. Such a flow exists because all capacities are multiples of n−2/3. Observe that (u, v) ∈ Ē ′′
if min(ru, rv) � x̂(u,v)αn1/3 ln n and, consequently, also if min(ru, rv) � f(u,v)αn1/3 ln n, since f(u,v) � x̂(u,v) .

Consider the following two cases:

1. f(s̄,u1) � n−1/3 for some vertex u ∈ S .
2. f(s̄,u1) < n−1/3 for all vertices u ∈ S .

Case 1. Fix a vertex u ∈ S for which f(s̄,u1) � n−1/3. We will show that with probability at least 1 − 1/n there is a path
from s̄ to t̄ via u1 in Ḡs,t . The edge (s̄, u1) always belongs to Ē ′′ because αx̂(s̄,u1)n1/3 ln n � α f(s̄,u1)n1/3 ln n > 1 � ru . Consider
an arbitrary path u1 → v2 → t̄ . Note that f(v2,t̄) � f(u1,v2) , since all flow from u1 to v2 must be routed to t̄ along the edge
(v2, t̄). Thus, if rv � α f(u1,v2)n1/3 ln n, then (u1, v2) ∈ Ē ′′ and (v2, t̄) ∈ Ē ′′ . Therefore, if there is no path from u1 to t̄ in Ē ′′ ,
then rv > α f(u1,v2)n1/3 ln n for all v ∈ T . This happens with probability at most
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∏
v∈T

min
(
1 − α f(u1,v2)n

1/3 lnn,0
)
�

∏
v∈T

exp
(−α f(u1,v2)n

1/3 lnn
)

= exp

(
−

(∑
v∈T

f(u1,v2)

)
αn1/3 lnn

)

� exp
(− f(s̄,u1)αn1/3 lnn

)
� exp(− ln n) = 1

n
.

Therefore, with probability at least 1 − 1/n, there is a path from s̄ to t̄ in Ḡs,t and, consequently, the edge (s, t) is settled.
Case 2. For every u ∈ S , define a random variable Fu1 :

Fu1 =
∑

v∈T : ru�α f(u1,v2)n1/3 ln n

f(u1,v2).

This random variable gives a lower bound on the amount of flow that can be routed along the edges Ē ′′ from the source s̄
to the set of copies of nodes in T through the vertex u1. (Recall that Ē ′′ is a random set.)

Claim 4.5. Prru : u∈S [∑u∈S Fu1 � αn−1/3 lnn
8 ] � 1 − 1

2n .

Proof. The value of Fu1 depends only on ru , and hence all random variables Fu1 are independent. If f(u1,v2) > 0 then
f(u1,v2) � n−2/3 because f(u1,v2) is a multiple of n−2/3. Therefore, for all nodes u ∈ S and v ∈ T with positive flow f(u1,v2) ,

Pr
ru

[
ru � α f(u1,v2)n

1/3 lnn
] = min

(
α f(u1,v2)n

1/3 lnn,1
)
� αn−2/3n1/3 lnn � αn−1/3 lnn.

This implies that for all nodes u ∈ S and v ∈ T ,

f(u1,v2) · Pr
ru

[
ru � α f(u1,v2)n

1/3 lnn
]
� f(u1,v2) · αn−1/3 lnn.

Therefore,

E

[∑
u∈S

Fu1

]
=

∑
u∈S

(∑
v∈T

f(u1,v2) Pr
ru

[
ru � α f(u1,v2)n

1/3 lnn
])

�
∑
u∈S

(∑
v∈T

f(u1,v2)

)
αn−1/3 lnn =

(∑
u∈S

f(s̄,u1)

)
αn−1/3 lnn � α

4
n−1/3 lnn.

Now we use the assumption that f(s̄,u1) � n−1/3 for all u ∈ S . By flow conservation, it implies that all Fu1 are bounded
from above by n−1/3. By the Hoeffding inequality3 applied with ε = 1/2 and c = n−1/3,

Pr
ru

[∑
u∈S

Fu1 � αn−1/3 lnn

8

]
= 1 − Pr

ru

[∑
u∈S

Fu1 <
1

2
E

[∑
u∈S

Fu1

]]

� 1 − exp

(
−α ln n

32

)
� 1 − 1

2n
. �

Next, we condition on the event that
∑

u∈S Fu1 � αn−1/3 ln n/8, and bound the conditional probability that there exists
a path from s̄ to t̄ .

Claim 4.6. For any fixed {ru}u∈S , such that
∑

u∈S Fu1 � αn−1/3 ln n/8, we have

Pr
rv : v∈T

[
there is no path s̄ → u1 → v2 → t̄ in E ′′] � 1

2n
.

3 Here we use the following variant of the Hoeffding’s inequality. Let X1, . . . , Xn be independent random variables taking values in [0, c]. Let Sn = ∑
Xi ,

let μ = E[Sn]. Then, for every positive ε,

Pr
[

Sn � (1 − ε)μ
] � e− 1

2 ε2μ/c .

For reference see, e.g., [34, Theorem 2.3(c) (p. 200)].
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Proof. For every v ∈ T , let

F v2 =
∑

u1: ru�α f(u1,v2)n1/3 ln n

f(u1,v2).

If for some ṽ ∈ T we have F ṽ2
> 0, then for some ũ ∈ S , rũ � α f(ũ1,ṽ2)n

1/3 ln n, rũ � α f(s̄,ũ1)n
1/3 ln n and, hence, the path

s̄ → ũ1 → ṽ2 belongs to E ′′ . Also,

f(ṽ2,t̄) =
∑
u∈S

f(u1,ṽ2) � F v2 .

Now for a fixed {ru}u∈S and a vertex ṽ ∈ T , we bound the probability that (ṽ2, t̄) ∈ E ′′ from below by

Pr
rṽ

[
rṽ � α f(ṽ2,t̄)n

1/3 lnn
]
� min

(
α f(ṽ2,t̄)n

1/3 lnn,1
)
� min

(
αF ṽ2

n1/3 lnn,1
)
.

Note that we have a lower bound on the sum of F v2 ’s:

∑
v∈T

F v2 =
∑
u∈S

Fu1 � αn−1/3 lnn

8
.

Thus, we can use the same argument as in Claim 2.3 to get a lower bound on the overall probability:

Pr
rv

[
(v2, t̄) /∈ E ′′, for all v ∈ T with F v2 > 0

]
� exp

(
−

∑
v∈T

αF v2n1/3 lnn

)

� exp
(−α2 ln2 n/8

)
<

1

2n
. �

By Claims 4.5 and 4.6, the probability that there exists a path s̄ → u1 → v2 → t̄ is at least (1 − 1/(2n))2 > 1 − 1/n. �
5. An O (n2/3+ε)-approximation for DIRECTED STEINER FOREST

Let us first recall the Directed Steiner Forest (DSF) problem. Given a directed graph G = (V , E), a cost function c : E →
R

+ and a set D ⊆ V × V of ordered pairs, the goal is to find a min-cost subgraph H of G that contains a path from s to t
for every (s, t) ∈ D . In contrast to spanners, there is no restriction on the paths used to connect pairs, but the objective to
be optimized depends on arbitrary edge costs.

Theorem 5.1. For any fixed ε > 0, there is a polynomial time randomized algorithm for Directed Steiner Forest with expected
approximation ratio O (n2/3+ε).

Our algorithm for DSF builds on the algorithm of Feldman, Kortsarz and Nutov [32] for the problem. We describe their
algorithm and most of their analysis, using notation compatible with previous sections of this paper, and show where we
make our improvement. As mentioned in [32], one can assume without loss of generality that D ⊆ S × T for two disjoint
subsets S and T of V and that the costs are metric.

Let τ denote our guess for the optimal value of OPT . We start from τ = 1 and repeatedly double our guess each time
we find it is too small. Thus, it suffices to give the approximation guarantee for the iteration when OPT � τ � 2 · OPT . The
algorithm has two parameters: β and �. We set β = n1/3 and � = τ/n2/3 below.

Let us adapt some terminology from the previous sections to this new setting.

Definition 5.1 (Thick and thin pairs). For a pair (s, t) ∈ D , let Gs,t = (V s,t, Es,t) be the subgraph of G induced by the vertices
on paths from s to t of cost at most �. A pair (s, t) ∈ D is thick if |V s,t | � n/β and it is thin otherwise.

Definition 5.2. A set E ′ ⊆ E settles a pair (s, t) ∈ D if the subgraph (V , E ′) contains a path from s to t .

The high-level structure of the algorithm is the same as for the spanner problem. We will describe how to find in
polynomial time two sets E ′, E ′′ ⊆ E , such that E ′ settles all the thick pairs and E ′′ settles all the thin pairs.

The thick pairs can be settled by random sampling, just as in Section 2.1. For p = O ((log n)/(n/β)), if each vertex is
selected with probability p to lie in a set R , then for every (s, t) ∈ D , R ∩ V s,t �= ∅ with high probability. Let the set E ′ be
constructed by adding, for each u ∈ R , s ∈ S , t ∈ T , the edges of a path from s to u of cost at most � if one exists and the
edges of a path from u to t of cost at most � if one exists. The expected number of thick pairs still not settled is at most
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Minimize
∑
e∈E

c(e) · xe subject to: (7)

∑
(s,t)∈D

ys,t � |D|/2

∑
Π(s,t)�P�e

f P � xe ∀(s, t) ∈ D, e ∈ E

∑
P∈Π(s,t)

f P = ys,t ∀(s, t) ∈ D

0 � ys,t , f P , xe � 1 ∀(s, t) ∈ D, P ∈ Π, e ∈ E

Fig. 3. Linear program LP-DSF for the case |D − C | > |D|/2.

|D|/n2 � 1. Thus, we can add the edges of a minimum-cost path from s to t for any unsettled thick pair (s, t) and still have
that the expected cost of E ′ be O (n · pn · � + τ ) = Õ (n�β + τ ) = Õ (n2/3τ ), where we use τ as an upper bound on the cost
of a minimum-cost (s, t)-path.

We remove the settled thick pairs from D , so that it only consists of the unsettled thin pairs. Next, we construct an
edge set E ′′ that settles all the thin pairs. Define the density of a subset of E to be the ratio between the total cost of
the subset and the number of pairs in D settled by it. We show how to efficiently construct a subset K with expected
density O (n2/3+ε) · τ/|D|. This allows us to compute the set E ′′: starting from |D| unsettled thin pairs and E ′′ = ∅, find K
of expected density O (n2/3+ε) · τ/|D|, add the edges in K to E ′′ , remove the settled pairs from D , and repeat. As shown
in Theorem 2.1 of [32], this greedy procedure produces a subset E ′′ of expected cost O (n2/3+ε) · τ that settles all the thin
pairs, completing the proof of Theorem 5.1.

The edge set K is produced by constructing two sets K1 and K2 and letting K be the set of smaller density. We guarantee
that one of K1 and K2 has expected density O (n2/3+ε) · τ/|D|. Whether the guarantee is provided for K1 or K2 depends
upon which one of the two cases below holds. Suppose H is an optimal solution with cost τ (we ignore the factor of 2 for
simplicity). Let C be the set of pairs (s, t) ∈ D for which the minimum cost of an (s, t)-path in H is at least �; that is, these
are the costly pairs to settle. The two cases are: |C | � |D|/2 and |C | < |D|/2.

Case 1: |C | � |D|/2. This case relies on a result of Chekuri, Even, Gupta and Segev [35]. Define a junction tree to be
the union of an ingoing tree and an outgoing tree (not necessarily disjoint) rooted at the same vertex. Ref. [35] shows an
O (nε)-approximation for the minimum density junction tree of a graph. Fortunately, there exists a junction tree of density
at most τ 2/(|C |�). To see why, take the paths in H connecting the pairs in C . The sum of the costs of all such paths
is at least |C |�. If we denote the maximum number of these paths that any edge belongs to as μ, then the sum of the
costs of the paths is at most μ · τ and thus there exists an edge, which belongs to μ � |C |�/τ paths. Therefore, there
must be a junction tree K1 which contains this edge and connects at least |C |�/τ pairs in D . K1 has density at most
τ/(|C |�/τ ) = τ 2/(|C |�). Thus, when |C | � |D|/2, the algorithm of [35] (deterministically) returns a junction tree of density
O (nε · τ/� · τ/|D|) = O (n2/3+ε) · τ/|D|.

Case 2: |D − C | > |D|/2. In this case, we attempt to find a subgraph that connects many pairs of D using low-cost edges.
Consider the problem of connecting at least |D|/2 pairs from D using paths of cost at most � while minimizing the total
cost of the edges. For (s, t) ∈ D , let Π(s, t) be the set of (s, t)-paths of cost at most �, and let Π = ⋃

(s,t)∈D Π(s, t). We
can formulate an LP relaxation for this problem, LP-DSF, shown in Fig. 3, which closely resembles the LP used by [20] for
Directed k-Spanner. Each edge e has a capacity xe , each path P ∈ Π carries f P units of flow, and ys,t is the total flow
through all paths from s to t . Also, the total flow through all paths in Π should be at least |D|/2. It is clear that LP-DSF is
a relaxation of the problem of connecting at least |D|/2 pairs in D while minimizing the cost of the edges. Ref. [32] shows
that in polynomial time, we can find a solution {x̂e} ∪ { ŷs,t} such that

∑
e∈E c(e) · x̂e is within (1 + ε) factor of OPT , the

optimal solution to LP-DSF, for any fixed ε > 0.
Our improvement comes in the analysis of the rounding algorithm for LP-DSF. Suppose {x̂e} ∪ { ŷs,t} is a feasible solution

to LP-DSF. Let K2 be the edge set obtained by selecting each edge in E with probability min((8n ln n)/β · xe,1).

Lemma 5.2. With probability � 1 − 1/n2 , set K2 settles every thin pair (s, t) with ŷs,t � 1/4.

Proof. We reinterpret Definition 2.4 in terms of edge costs instead of lengths. More precisely, define a set A ⊆ E to be an
antispanner for a pair (s, t) ∈ D if (V , E \ A) contains no path from s to t of cost at most �. By exactly the same argument
as in Claim 2.5, the set of all minimal antispanners for thin pairs is of size at most n2(n/β)n/β .

For every thin pair (s, t) ∈ D with ŷs,t � 1/4, if A is an antispanner for (s, t), then
∑

e∈A x̂e �
∑

P∈Π(s,t) f̂ P � 1/4, where

f̂ P is the value of the variable f P in LP-DSF that corresponds to the solution {x̂e} ∪ { ŷs,t}. So, the probability that K2 is
disjoint from A is at most exp(−(n ln n)/β), by the same argument as in Claim 2.3. Thus, by the bound on the total number
of antispanners of thin pairs from above, the union bound, and Claim 2.4, it follows that with high probability, K2 settles
every thin pair (s, t) with ŷs,t � 1/4. �
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We add to K2 a minimum-cost path between any pair (s, t) with ŷs,t � 1/4 that is still not settled. In expectation, the
number of such pairs is |D|/n2 � 1, so that the total expected cost4 of K2 is at most (16n ln n)/β · τ . A simple argument
shows that the number of pairs (s, t) in D for which ŷs,t < 1/4 is at most 2|D|/3; assuming the opposite makes the total
amount of flow between all pairs strictly less than |D|/2. So, the expected density of K2 is at most:

(
16n ln n

β
· τ

)
/
(|D| − 2|D|/3

) = 48n ln n

β
· τ

|D| = Õ
(
n2/3) · τ/|D|.

As we said earlier, the set K is taken to be either K1 or K2, depending upon which has the smaller density. By the above,
expected density of K is at most O (n2/3+ε) · τ/|D|. This concludes the proof of Theorem 5.1.

6. Conclusion

For general Directed k-Spanner, we obtained an approximation ratio of Õ (
√

n ) and for Directed 3-Spanner with unit
edge lengths we obtained an approximation ratio of Õ (n1/3). The second bound almost matches the LP integrality gap
of Dinitz and Krauthgamer [20]. It remains an interesting open question whether one can get an approximation ratio of
Õ (n1/3) for the general case.

All our algorithms are randomized and have an expected approximation factor. Our algorithms consist of multiple stages
and the analysis of concentration of the cost of the solution can be done using standard concentration bounds for each
stage separately in the same way as in the previous work (e.g. [16,20,32]), so we omit it to simplify presentation. It remains
open whether these algorithms can be derandomized.

Appendix A

We use the following standard concentration result on Poisson random variables, giving the proof for completeness.

Lemma A.1. Let P be a Poisson random variable with parameter λ � 1. Then

Pr
[

P < �λ/e�] � e−λ/4;
Pr[P > eλ] � e−λ.

Proof. Let T = �λ/e�. Then

Pr[P < λ/e] =
T −1∑
t=0

λte−λ

t! .

The terms in the sum increase exponentially: λt+1

(t+1)!/
λt

(t)! = λ
t+1 � e. Hence,

Pr[P < λ/e] � λT e−λ

T !
∞∑

t=0

e−t � λT e−λ

√
2π(T /e)T

× 2 � e−(λ−T )

(
λ

T

)T

� e−(λ−T )

(
λ

λ/e

)λ/e

� e−λ(1−2/e) � e−λ/4.

To estimate T ! we use Stirling’s approximation.
Similarly, let T ′ = �eλ�. Then

Pr[P > eλ] =
∞∑

t=T ′

λte−λ

t! .

The terms in the sum decrease exponentially: λt+1

(t+1)!/
λt

(t)! = λ
t+1 � 1/e. Hence,

Pr[P > eλ] � 2λT ′
e−λ

T ′! � 2λT ′
e−λ

√
2π(T ′/e)T ′ � e−λ

(
eλ

T ′

)T ′

� e−λ. �

4 This is where we save over [32]. The cost of their comparable K2 is O (n2/β2 · τ ).
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