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Abstract
A direct sum theorem for two parties and a function f
states that the communication cost of solving k copies
of f simultaneously with error probability 1/3 is at least
k · R1/3(f), where R1/3(f) is the communication required
to solve a single copy of f with error probability 1/3. We
improve this for a natural family of functions f , showing
that the 1-way communication required to solve k copies
of f simultaneously with probability 2/3 is Ω(k · R1/k(f)).
Since R1/k(f) may be as large as Ω(R1/3(f) · log k), we
asymptotically beat the direct sum bound for such functions,
showing that the trivial upper bound of solving each of
the k copies of f with probability 1 − O(1/k) and taking
a union bound is optimal! In order to achieve this, our
direct sum involves a novel measure of information cost
which allows a protocol to abort with constant probability,
and otherwise must be correct with very high probability.
Moreover, for the functions considered, we show strong lower
bounds on the communication cost of protocols with these
relaxed guarantees; indeed, our lower bounds match those
for protocols that are not allowed to abort.

In the distributed and streaming models, where one
wants to be correct not only on a single query, but simulta-
neously on a sequence of n queries, we obtain optimal lower
bounds on the communication or space complexity. Lower
bounds obtained from our direct sum result show that a
number of techniques in the sketching literature are opti-
mal, including the following:

• (JL transform) Lower bound of Ω( 1
ε2

log n
δ

) on the
dimension of (oblivious) Johnson-Lindenstrauss trans-
forms.

• (`p-estimation) Lower bound for the size of encodings
of n vectors in [±M ]d that allow `1 or `2-estimation of
Ω(nε−2 log n

δ
(log d+ logM)).

• (Matrix sketching) Lower bound of Ω( 1
ε2

log n
δ

) on the
dimension of a matrix sketch S satisfying the entrywise
guarantee |(ASSTB)i,j − (AB)i,j | ≤ ε‖Ai‖2‖Bj‖2.

• (Database joins) Lower bound of Ω(n 1
ε2

log n
δ

logM) for
sketching frequency vectors of n tables in a database,
each with M records, in order to allow join size estima-
tion.
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1 Introduction

We study the two-party communication complexity of
solving multiple instances of a function f(x, y). In this
setting, Alice has x1, . . . , xk, while Bob has y1, . . . , yk,
and they would like to communicate as few bits as possi-
ble in order to compute the list (f(x1, y1), . . . , f(xk, yk))
with probability at least 2/3. We call this problem
fk((x1, . . . , xk), (y1, . . . , yk)). A natural protocol for fk

would be for Alice and Bob to run an independent pro-
tocol for each i ∈ [k] to compute f(xi, yi) with prob-
ability at least 1 − 1/(3k). Then, by a union bound,
the entire list is computed correctly with probability at
least 2/3. If we let Rδ(f) denote the minimal commu-
nication cost of a randomized protocol for computing f
with probability at least 1 − δ, this gives us the upper
bound R1/3(fk) = O(kR1/(3k)(f)). A natural question
is whether this is optimal.

A direct sum theorem in communication complexity
states that solving k copies of f with probability at least
2/3 requires at least k times as much communication as
solving a single copy with probability at least 2/3, that
is, R1/3(fk) = Ω(kR1/3(f)). The direct sum problem is
the focus of much work [10, 35, 21, 16, 8, 26, 9]. The
direct sum theorem is known to hold for a number of
specific functions, though it is not true for randomized
private coin communication in general, as demonstrated
by the Equality function. For this function, Alice and
Bob have x ∈ {0, 1}k and y ∈ {0, 1}k respectively, and
f(x, y) = 1 if x = y, otherwise f(x, y) = 0. In this case,
R1/3(fk) = Θ(k) [15], yet R1/3(f) = Θ(log k) [28].

One of the most general known results about di-
rect sums for communication is the following. Let-
ting Dµ

1/3(fk) denote the distributional complexity of

fk, that is, the minimal cost of a deterministic pro-
tocol for computing fk which errs on at most a 1/3
fraction of inputs, weighted according to distribution
µ, then Dµ,r

1/3−ε(f
k) = Ω(k(Dµ

1/3(f) − r log(1/ε) −

O(
√
Dµ

1/3(f)r))), where Dµ,r
1/3−ε(f

k) denotes the mini-

mal cost of a deterministic protocol for computing fk



with error probability at most 1/3 − ε according to µ,
and which uses at most r rounds of communication [9].
Moreover, this holds even if the protocol is only required
to individually solve each of the n copies of f with prob-
ability at least 1/3 − ε, rather than to simultaneously
solve all copies. Other related work includes direct prod-
uct theorems, which state that any protocol which uses
o(kR1/3(f)) communication has success probability at

most exp(−k) in solving fk. Direct product theorems
are known to hold for several functions, such as dis-
jointness [26] and bounded round public-coin random-
ized communication [19, 20]. For more discussion on the
latter two works, see below.

The starting point of our work is the following
observation: even if a direct sum or direct product
theorem were to hold for a function f , this is not enough
to obtain optimal communication bounds, since one
would only be able to conclude that:

Ω(kR1/3(f)) = R1/3(fk) = O(kR1/(3k)(f)).

The ratio of the upper and lower bounds is
O(R1/(3k)(f)/R1/3(f)), which can be as large as
Θ(log k). This Θ(log k) factor is important in ap-
plications, which we describe below. Generic direct
sum (or direct product) theorems are not suitable for
addressing this gap, since such theorems do not take
into account whether or not f becomes harder with
smaller error probability, i.e., whether Rδ(f) � Rδ′(f)
for δ � δ′. For many functions, R1/3(f) = Θ(R0(f)),
e.g., for the disjointness problem, and there is noth-
ing to prove in this case. Still for other functions,
such as equality on n-bit strings, one can show that
Rδ(f) = Θ(log 1/δ + log n), and so Rδ(f)� Rδ′(f) for
δ � δ′ � 1/n.

Our Results: Our main theorem is a strengthening
of the direct sum theorem for two-party randomized
communication complexity to address this gap. We
note that although our applications are for 1-way
protocols, our main theorem holds for general 2-way
communication. For that, we introduce the notion of
deterministic protocols Π with the following “abortion”
property.

Definition 1.1. (Protocols with abortion)
Consider a communication problem given by
f : X × Y → Z and a probability distribution µ
over X × Y. We say that a deterministic protocol ΠD

(β, δ)-computes f with respect to µ if it satisfies the
following (where (X,Y ) ∼ µ):

1. (Abortion probability) Pr[ΠD(X,Y ) = ‘abort’] ≤ β

2. (Success probability) Pr[ΠD(X,Y ) 6= f(X,Y ) |
ΠD(X,Y ) 6= ‘abort’] ≤ δ.

We can view randomized protocols as distributions
over deterministic protocols (both for private-coin and
public-coin protocols). We say that a randomized
protocol Π (α, β, δ)-computes f with respect to µ if

Pr
ΠD∼Π

[ΠD (β, δ)-computes f ] ≥ 1 − α. The probability

is taken over all randomness of the parties.

One should think of β � δ. Notice that a protocol that
(β, δ)-computes f is more powerful than a deterministic
protocol which errs with probability at most ≈ β on
the input distribution µ, since it “knows when it is
wrong”. On the other hand, it is less powerful than
a deterministic protocol which errs with probability at
most δ on distribution µ.

In our proofs we use the information complexity
framework (see Section 2 for an introduction and basic
definitions), developed and used for many important
communication complexity problems [6, 8, 10, 16]. Our
definitions are most closely related to those in [7] (see
also [8]). Let λ be a distribution on X × Y × D with
marginals µ on X × Y and ν on D. Let (X,Y,D) ∼ λ
and suppose for any value of d ∈ D that X and
Y are independent conditioned on D = d. The
conditional information cost of Π under λ is defined
as I(Π(X,Y );X,Y |D), where (X,Y,D) ∼ λ. Let
ICµ,α,β,δ(f |ν) denote the minimum, over all protocols Π
that (α, β, δ)-compute f , of I(X,Y ; Π | D), where with
some abuse of notation, Π is also used to denote the
transcript of the protocol (that is, the set of messages
exchanged together with the output). We also use
the notation ICµ,δ(f |ν) to denote the minimum of
I(X,Y ; Π | D) over all randomized protocols Π, which
(0, 0, δ)-compute f (that is, which err with probability
at most δ on every input, where the probability is over
the random coins of Π). Notice that I(X,Y ; Π | D) ≤
H(Π) ≤ |Π| (where |Π| is the maximum number of
bits transmitted by Π over all inputs and choices of
randomness), and so ICµ,δ(f |ν) is a lower bound on
Rδ(f). As we will also be interested in 1-way protocols,
we use IC→µ,α,β,δ(f |ν) and IC→µ,δ(f |ν) to denote the above
notions, where the minimum is taken over only 1-way
protocols Π.

The following is our main theorem.

Theorem 1.1. (Informal) For all δ ≤ 1/3,

ICµk,δ(f
k|νk) ≥ Ω(k) ICµ, 1

20 ,
1
10 ,

δ
k

(f |ν),

and also IC→µk,δ(f
k|νk) ≥ Ω(k) IC→µ, 1

20 ,
1
10 ,

δ
k

(f |ν).

As an example usage of our theorem, we can apply it
to the Equality function f on k-bit strings. Namely, we



are able to show for certain distributions µ and ν that
IC→µ,1/20,1/10,1/k(f |ν) = Ω(log k), matching the lower
bound for protocols that are not allowed to abort. Our
theorem therefore implies that R→1/3(fk) = Ω(k log k),
that is, the randomized 1-way complexity of solving k
copies of Equality simultaneously is Ω(k log k). This
is matched by a trivial O(k log k) upper bound which
solves Equality independently on each instance with
probability 1 − O(1/k). To the best of our knowledge,
no such result was known in the literature.

More importantly, we are able to apply our theorem
to the augmented indexing problem on large domains
with low error [23], denoted by Inda(k,N). In this
problem, Alice has a list x1, x2, . . . , xN , each item
belonging to the set [k] = {1, 2, . . . , k}, while Bob
has input j ∈ [N ], x1, x2, . . . , xj−1, and y ∈ [k]. The
function f evaluates to 1 if xj = y, and otherwise
it evaluates to 0. We consider 1-way protocols Π,
where the message is sent from Alice to Bob. It
is known that R→1/k(f) = Θ(N log k) [23]. We are
able to show that for certain distributions µ and ν,
we in fact have IC→µ,1/20,1/10,1/k(f |ν) = Ω(N log k).
Plugging this in to our main theorem, we obtain that
R→1/3(fk) = Ω(kN log k). Previously, it was only known

that R→1/3(fk) = Ω(kN), which can be shown by using

that IC→µ,1/3(f |ν) = Ω(N) [6], and applying a standard
direct sum argument [7].

Our lower bound is optimal in light of a trivial upper
bound in which Alice sends her entire input to Bob. The
augmented indexing problem is known to have a long list
of applications to data streams and sketching, some of
the most recent applications appearing in [25, 24, 23],
and so our lower bound on solving k copies of this
problem applies to solving multiple copies of these
problems, as described below.

Applications: 1 Our first application is to the
sketching complexity [18, 30] of n-point Johnson-
Lindenstrauss transforms. Here one wants to design a
distribution over k × d matrices S so that given any
n points p1,p2, . . . ,pn in Rd, with probability at least
1− δ, for all i and j, ‖Spi−Spj‖2 = (1± ε)‖pi−pj‖2.
See Definition 1 of [34], where this is referred to as
JLT(ε, δ, n). Alon [3] has shown that this problem re-
quires k = Ω( 1

ε2
1

log 1/ε log n
δ ) dimensions. Jayram and

the second author show that for a constant number
of points (n = O(1)), k = Ω(ε−2 log 1

δ ), which is also
achievable by applying known Johnson-Lindenstrauss
transforms [23]. We note that such work does not
imply that for general n there is a lower bound of

1All logarithms are base 2, unless otherwise specified. To

simplify the notation, we assume throughout that quantities like
1/ε2 and 1/δ are always integral.

k = Ω(ε−2 log n
δ ). Indeed, for all we knew, it could

have been that k = O( 1
ε2

1
log 1/ε log n

δ ), since there may

be a better strategy than setting the failure probabil-
ity to O(δ/n2) and taking a union bound over the

(
n
2

)
pairs of points. Our main theorem rules out this pos-
sibility, showing that k = Ω(ε−2 log n

δ ) (Theorem 4.3).
In fact, the main theorem shows that even if S is al-
lowed to depend on the first n/2 points in an arbitrary
way, the same lower bound still holds. In addition, we
show that any encoding φ(p1), . . . , φ(pn) that allows
pairwise `p-distance estimation for p ∈ {1, 2} requires
bit size Ω(nε−2 log n

δ (log d + logM)), where M is the
largest entry in absolute value of the vectors pi’s (The-
orem 4.1); this is again optimal and achieved by known
dimension reduction techniques [17].

A related problem is that of sketching matrix prod-
uct, initiated in [34]. Here one wants to design a dis-
tribution over n × k matrices S, so that given n × n
matrices A and B, one can “sketch” the matrices to ob-
tain AS and STB such that the matrix C = ASSTB
approximates the product AB for some measure of er-
ror. Ideally, we would like k to be as small as possible,
and obtain an entrywise error guarantee, namely, for all
i, j ∈ [n], we would like |(AB)i,j −Ci,j | ≤ ε‖Ai‖2‖Bj‖2,
where Ai denotes the i-th row of A and Bj the j-th
column of B. This notion of error has been used in
several works, see the end of Section 1.1 of [33] for a
discussion. In particular, Sárlos [34] achieves this error
guarantee with k = O(ε−2 log n

δ ), for success probabil-
ity 1 − δ. Later, Clarkson and the second author [12]
were able to achieve k = O(ε−2 log 1

δ ) with the weaker
guarantee that ‖AB − C‖F ≤ ε‖A‖F ‖B‖F . A natu-
ral question left open is whether k = O(ε−2 log 1

δ ) is
possible with the entrywise error guarantee. Using our
main theorem, we show that this is not possible, namely
that k = Ω(ε−2 log n

δ ) is required in order to achieve the
entrywise error guarantee (Theorem 4.5). We therefore
separate the complexity of the two problems. Moreover,
we show that sketches that satisfy the weaker guaran-
tee that there is a procedure f outputting a matrix such
that |f(AS,B)i,j − (AB)i,j | ≤ ε‖Ai‖‖Bj‖ for all matri-
ces A,B ∈ [±M ]n×n, then the bit size of AS is at least
Ω(n 1

ε2 log n
δ (log n+ logM)), which is achieved in [34].

The final application we discuss is to multiple ag-
gregation queries. While much of the data stream liter-
ature involves sequentially processing a large database
to answer a single query, such as the number of distinct
elements in a certain column or the join size of two ta-
bles, what one usually wants is to perform a sequence
of such queries to different parts of the database. This
issue was raised in [4], where the authors consider the
setting of a relation which holds multiple tables, each of
which has multiple columns of attributes. The authors



consider the problem of sketching each of the columns
of attributes in each of the different tables, so that the
storage size of the database can be reduced, yet at any
later time, a user can ask for the join size along an at-
tribute shared by two tables. They show that if the
number of tables and attributes is poly(n), then each
column can be compressed to O(ε−2 log n

δ logM) bits,
where M is an upper bound on the number of records
in each table. It was left open whether or not this is
optimal. Using our main theorem, we can show that
Ω(ε−2 log n

δ logM) bits are in fact necessary (Theorem
4.6).

All of our results concerning linear sketches also
hold for the turnstile model of data streaming [32, 5]
and for more general data structures which, given their
current state, and an update to the underlying vector,
can produce a new state. Such data structures are
sometimes referred to as mergeable summaries [2].

Our Techniques: Our starting point is the di-
rect sum framework of [7]. There the authors show
that for (X,Y,D) ∼ λ with (X,Y ) ∼ µ and D ∼ ν, if
X and Y are independent conditioned on D = d for
any d ∈ D, then ICµk,δ(f

k|νn) = Ω(k ICµ,δ(f |ν)). To
show this, they start with any randomized private coin
protocol Π for fk, with inputs (X1, Y1), . . . , (Xk, Yk)
and values D1, . . . , Dk, so that the Xi and Yi are
independent conditioned on Di. They study the
mutual information between the transcript and
the inputs, conditioned on D1, . . . , Dk, namely
I(X,Y; Π|D) = H(X,Y|D) − H(X,Y|Π,D), where
X = (X1, . . . , Xn), and Y and D are defined similarly.
By the chain rule for mutual information,

I(X,Y; Π | D) =

k∑
i=1

I(Xi, Yi; Π | D,X<i,Y<i),

where X<i and Y<i denote the first i−1 coordinates of
X and Y, respectively. For each summand, we further
have

I(Xi, Yi; Π | D,X<i,Y<i) =∑
x<i,y<i,

d−i

I(Xi, Yi; Π | Di,X<i = x<i,Y<i = y<i,D−i = d−i)·

Pr[X<i = x<i,Y<i = y<i,D−i = d−i],

where D−i denotes D with its i-th coordinate removed.
The next step is the embedding step, which argues
that for any choice of x<i,y<i, and d−i, I(Xi, Yi; Π |
Di,X<i = x<i,Y<i = y<i,D−i = d−i) is at least
ICµ,δ(f |ν). This step works by building a protocol Π′

for solving f by hardwiring the values x<i,y<i and d−i
into Π′. Then given inputs (A,B) to Π′ distributed

according to µ, the parties set Xi = A, Yi = B,
and generate X>i and Y>i using private randomness
without any communication. This is possible given the
conditioning D−i = d−i. A randomized protocol Π
for fk, for every input, solves f in each coordinate
simultaneously with probability at least 1 − δ, and
therefore Π′ is a correct protocol for f with probability
at least 1−δ. Moreover, this simulation guarantees that
I(Xi, Yi; Π | Di,X<i = x<i,Y<i = y<i,D−i = d−i) =
I(A,B; Π′ | Di) ≥ ICµ,δ(f |ν).

Our main idea is to change the embedding step as
follows. Observe that

1− δ ≤ Pr(Π(X,Y) = fk(X,Y))

=

k∏
i=1

Pr(Πi(X,Y) = fki (X,Y) | Π<i(X,Y) = fk<i(X,Y)),

where Πi(X,Y) denotes the i-th coordinate of the
output of Π, and fki (X,Y) the i-th coordinate of
the output of fk, and similarly define Π<i(X,Y) and
fk<i(X,Y). Hence, by averaging, most of the k terms
in the product are at least 1 − O

(
δ
k

)
. Qualitatively

speaking, conditioned on Π succeeding on a typical
prefix of the first i − 1 coordinates, it is much more
likely to succeed on the i-th coordinate than it would
be without this conditioning.

This motivates the following change to the embed-
ding step: since x<i and y<i are hardwired into Π,
the parties know the value f(xj , yj) for all j < i, and
given the output of Π, can first verify whether or not
Π<i(X,Y) = (f(x1, y1), . . . , f(xi−1, yi−1)). If this con-
dition holds, then they can output Πi(X,Y) as usual.
However, if this condition fails to hold, the parties out-
put ‘abort’. We prove that for a typical prefix x<i,y<i,
for most of the random seeds of the protocol and for
most choices of random suffixes X>i and Y>i, the fol-
lowing holds: the parties only abort with constant prob-
ability over the inputs (A,B) ∼ µ, and given that they
do not abort, the output is correct with a very large
1 − O(1/k) probability. Moreover, we still have that
the information revealed by this protocol can be used
to lower bound the term I(Xi, Yi; Π | D,X<i,Y<i).

To complete the direct sum argument, we need a
way of lower-bounding the information revealed by a
protocol with this abortion property. For this, we di-
rectly bound the information revealed by designing an
estimation procedure for predicting (Xi, Yi) from the
transcript of Π, and applying Fano’s inequality. This
part generalizes the approach used in [23], who show
lower bounds for (0, 0, δ)-protocols. In our case we show
that allowing constant probability of failure over the
choice or randomness of the protocol and constant prob-
ability of abortion over the choice of the input doesn’t
change the asymptotic dependence of information cost



as a function of the success probability over the choice
of the input conditioned on non-abortion.

Other Related Work: In [19, 20], the au-
thors show that for O(1)-round public-coin random-

ized communication complexity Rpub

1−(1−ε/2)Ω(kε2)
(fk) =

Ω
(
εk
(
Rpub
ε (f)−O

(
1
ε2

)))
, where ε > 0 is arbitrary.

One cannot apply this theorem to our problem, as one
would need to set ε = 1/k to obtain our results, at
which point the theorem gives a trivial bound. A similar
problem occurs trying to apply the direct sum theorem
of [22]. These are not drawbacks of these works, since
their study is for a vastly different regime of parameters,
namely, for constant ε, and for every relation f . We in-
stead only consider functions f for which we can lower
bound the conditional information cost of protocols with
the abortion property. These are of particular impor-
tance for sketching and streaming applications and for
these functions we obtain the first optimal bounds.

2 The Direct Sum Theorem

We give a summary of basic properties of the entropy
of a discrete random variable X, denoted as H(X), and
the mutual information between two discrete random
variables X and Y , denoted as I(X;Y ) = H(X) −
H(X|Y ), below (see Chapter 2 in [13] for the proofs):

Proposition 2.1. 1. Entropy span: 0 ≤ H(X) ≤
log |supp(X)|.

2. I(X;Y ) ≥ 0 because H(X|Y ) ≤ H(X).

3. Chain rule: I(X1, X2, . . . , Xn;Y |Z) =∑n
i=1 I(Xi;Y |X1, . . . , Xi−1, Z).

4. Subadditivity: H(X,Y |Z) ≤ H(X|Z) + H(Y |Z),
where the equality holds if and only if X and Y are
independent conditioned on Z.

5. Fano’s inequality: Let A be a random variable,
which can be used as “predictor” of X, namely
there exists a function g such that Pr[g(A) = X] ≥
1 − δ for some δ < 1/2. If |supp(X)| ≥ 2 then
H(X|A) ≤ δ log(|supp(X)| − 1) + h2(δ), where
h2(δ) = δ log(1/δ) + (1 − δ) log 1

1−δ is the binary
entropy.

We recall standard definitions from information
complexity and introduce the information complexity
for protocols with abortion, denoted as ICµ,α,β,δ(f |ν),
more formally. Given a communication problem f :
X × Y → Z, consider the augmented space X × Y ×D
for some D. Let λ be a distribution over X × Y × D,
which induces marginals µ on X × Y and ν on D. We
say that ν partitions µ, if µ is a mixture of product
distributions, namely for a random variable (X,Y,D) ∼

λ, conditioning on any value of D makes the distribution
of (X,Y ) product.

To simplify the notation, a δ-protocol for f is one
that for all inputs (x, y) ∈ X ×Y computes f(x, y) with
probability at least 1 − δ (over the randomness of the
protocol).

Definition 2.1. Let Π be a protocol, which computes
f . The conditional information cost of Π under λ is
defined as I(Π(X,Y );X,Y | D), where (X,Y,D) ∼ λ.
The conditional information complexity of f with re-
spect to λ, denoted by ICµ,δ(f |ν), is defined as the min-
imum conditional information cost of a δ-protocol for
f . The information complexity with aborts, denoted by
ICµ,α,β,δ(f |ν), is the minimum conditional information
cost of a protocol that (α, β, δ)-computes f . The analo-
gous quantities IC→µ,δ(f |ν) and IC→µ,α,β,δ(f |ν) are defined
by taking the respective minimums over only one-way
protocols.

Our main theorem gives a lower bound the condi-
tional information cost of a δ-protocol for k copies of a
communication problem. More precisely, for a function
f : X ×Y → Z let fk : (X ×Y)k → Zk denote its k-fold
version fk(x,y) = (f(x1, y1), f(x2, y2), . . . , f(xk, yk)).

Theorem 2.1. Let δ ≤ 1/3. Then for every func-
tion f : X × Y → Z and distribution λ on X ×
Y × D with marginal µ on X × Y and marginal ν
on D, such that µ is partitioned by ν, it holds that
ICµk,δ(f

k|νk) ≥ Ω(k) ICµ, 1
20 ,

1
10 ,

δ
k

(f |ν). Moreover, this

result also holds for 1-way protocols: IC→µk,δ(f
k|νk) ≥

Ω(k) IC→µ, 1
20 ,

1
10 ,

δ
k

(f |ν).

For the remaining part of the section we prove this
theorem. Amplifying the success probability by repeat-
ing the protocol a constant number of times, it is easy
to see that ICµk,δ(f

k|νk) = Ω(1) ICµk,δ/2000(fk|νk),
and similarly for one-way protocols (see Appendix A).
Thus, without loss of generality we work with (δ/2000)-
protocols instead.

We focus on the first part of the theorem. For
each i ∈ [k], consider independent random variables
(Xi, Yi, Di) ∼ λ; to simplify the notation, we use Wi

to denote the pair (Xi, Yi). Let Π be a (δ/2000)-
protocol for fk with private randomness R that achieves
I(Π(W, R);W|D) = ICµk, 1

2000
(fk|νk). Our goal is to

lower bound the mutual information I(Π(W, R);W|D)
by k

8 ICµ, 1
20 ,

δ
10 ,

δ
k

(f |ν), by essentially showing that Π

needs to compute most of the k instances with prob-
ability 1−O(δ/k).



To make this precise, the guarantee of the protocol
gives that

1− δ

2000
≤ Pr(Π(W, R) = fk(W))

=

k∏
i=1

Pr(Πi(W, R) = fki (W) | Π<i(W, R) = fk<i(W)).

Using the bound p ≤ e−(1−p) (valid for all p ∈ [0, 1])
to each term in the right-hand side, we can then use
Markov’s inequality to show that for at least half of the
indices i ∈ [k] we have the strong conditional guarantee

Pr(Πi(W, R) = fki (W) | Π<i(W, R) = fk<i(W))(2.1)

≥ 1−
2 ln(1− δ

2000
)−1

k
≥ 1− δ

200k
,

where the last inequality uses the first-order approxi-
mation of ln at 1. We call these indices good. Moreover,
using the chain rule, we can express the mutual infor-
mation I(Π(W, R);W | D) in terms of the information
revealed of each component of W:

I(Π(W, R);W | D) =

k∑
i=1

I(Π(W, R);Wi | D,W<i).(2.2)

The idea is then, for each good index i, to ob-
tain from Π a protocol that (1/20, δ/10, δ/k)-computes
fki (W) and which reveals only O(I(Π(W, R);Wi |
D,W<i)) conditional information about Wi, effec-
tively showing that I(Π(W, R);Wi | D,W<i) ≥
Ω(ICµ, 1

20 ,
δ
10 ,

δ
k

(f |ν)). This is accomplished by simulat-

ing Π over some of its input. We show next that we can
“hardwire” the first i−1 inputs of Π while preserving the
relevant properties of the protocol. Unfortunately hard-
wiring the last k − i inputs of Π and its random seed
(and thus leaving only input i free) might change the
mutual information with Wi drastically; but we show
that there is a large set of suffixes that still preserve
most properties that we need. The existence of such
suffixes is proved via the probabilistic method.

Lemma 2.1. Consider a good index i ∈ [k]. Then there
exists a prefix w<i ∈ (X × Y)i−1 and a set G of fixings
of the suffix W>i and the random bits used by Π with
the following properties:

1. (Low information cost) I(Π(W, R);Wi | D,W<i =
w<i) ≤ 4 I(Π(W, R);Wi | D,W<i).

2. (Large set of fixings) Pr((W>i, R) ∈ G) ≥ 1− 1
20 .

3. (Success probability) For every (w>i, r) in G we
have

Pr
[
Π<i(w<iWiw>i, r) 6= fk<i(w<iWiw>i)

]
≤ δ

10
.

4. (Conditional success probability) For every (w>i, r)
in G we have

Pr[Πi(w<iWiw>i, r) 6= fki (w<iWiw>i) |

Π<i(w<iWiw>i, r) = fk<i(w<iWiw>i)] ≤
δ

k
.

Proof. We start by proving the following proposition.

Proposition 2.2. Consider a good index i ∈ [k]. Then
there exists w<i ∈ (X × Y)i−1 such that the following
hold:

• I(Π(w<iW≥i, R);Wi | D,W<i = w<i) ≤
4 I(Π(W, R);Wi | D,W<i)

• Pr[Π<i(w<iW≥i, R) 6= fk<i(w<iW≥i)] ≤ δ
500

• Pr[Πi(w<iW≥i, R) 6= fki (w<iW≥i) |
Π<i(w<iW≥i, R) = fk<i(w<iW≥i)] ≤ δ

50k .

Proof. We use the probabilistic method, so first we
analyze the expected value of the quantities in the left-
hand side of the above expression with respect to the
random variable W<i.

For Item 1, it follows from the definition of condi-
tional mutual information that

E
W<i

[I(Π(W<iW≥i, R);Wi | D,W<i)]

= E
W<i

[
E
D

[I(Π(W, R);Wi | D,W<i) |W<i]

]
= I(Π(W, R);Wi|D,W<i).

For Item 2, the product structure of µk and the guar-
antee of Π give

E
W<i

[
Pr
(
Π<i(W<iW≥i, R) 6= fk<i(w<iW≥i)

)]
= Pr(Π<i(W, R) 6= fk<i(W))

≤ Pr(Π(W, R) 6= fk(W)) ≤ δ

2000
.

For Item 3, we now use the fact that i is good to obtain∑
w<i

Pr
[
Πi(w<iW≥i, R) 6= fki (w<iW≥i) |

Π<i(w<iW≥i, R) = fk<i(w<iW≥i)
]
·

Pr(W<i = w<i | Π<i(W, R) = fk<i(W))

= Pr[Πi(W, R) 6= fki (W) | Π<i(W, R) = fk<i(W)] ≤ δ

200k
.

Although this last expectation is with respect to the
distribution conditioned on Π<i(W, R) = fk<i(W),



because of the guarantee of Π, this conditioning does
not change the distribution by much; more precisely, for
every event E we have Pr(E) ≤ Pr(E | Π<i(W, R) =
fk<i(W)) + δ/2000 < Pr(E | Π<i(W, R) = fk<i(W)) +
1/4.

Using Markov’s inequality to upper bound the
probability of being 4 times larger than the expectation
in each of the 3 items and taking a union bound, we
obtain that the there is a w<i satisfying the desired
properties in the proposition. This concludes the proof.
�

The proof of Lemma 2.1 then follows from Propo-
sition 2.2 above and again from the application of
Markov’s inequality and the union bound. �

Now we use the protocol Π hardwiring W<i = w<i

(for a w<i as above) and D−i = d−i to obtain a protocol
to (1/20, δ/10, δ/k)-compute f under the distribution µ.
The idea is to simulate the inputs W>i (conditioned on
D = d) and run the protocol Π(w<iWiW≥i, R), abort-
ing whenever Π<i(w<iWiW≥i, R) 6= fk<i(w<iWiW≥i).

Lemma 2.2. Consider a good i ∈ [k], let w<i sat-
isfy Lemma 2.1 and let d−i be such that Pr(W<i =
w<i,D−i = d−i) 6= 0. Then there exists a protocol Π̄
with input in X × Y and only private randomness R̄
satisfying the following:

• Π̄ ( 1
20 ,

δ
10 ,

δ
k )-computes f with respect to the distri-

bution µ

• For (W̄ , D̄) ∼ λ, I(Π̄(W̄ , R̄); W̄ | D̄) =
I(Π(W, R);Wi | Di,D−i = d−i,W<i = w<i).

Moreover, if Π is 1-way, then Π̄ is also 1-way.

Proof. The protocol Π̄ is constructed as follows. Sup-
pose that Alice has input x ∈ X and Bob has in-
put y ∈ Y. Since ν partitions µ, Alice and Bob use
their private randomness to sample respectively X′>i
and Y′>i according to the distribution µk−i conditioned
on D−i = d−i; more precisely, the random variable
(X′>i,Y

′
>i) has the same distribution as (X>i,Y>i) |

(D−i = d−i). They also use their private randomness
to obtain a random variable R′ with same distribution
as the random coins used in Π.

Using these random variables, the players
run the protocol Π(w<i, (x, y), (X′>i,Y

′
>i), R

′) to
obtain estimates of the vector-valued function
fk(w<i, (x, y), (X′>i,Y

′
>i)). Finally, since w<i is known

to Bob, he checks whether Π gave the correct values of
the first i− 1 coordinates of fk(w<i, (x, y), (X′>i,Y

′
>i),

namely if

Πj(w<i, (x, y), (X′>i,Y
′
>i), R

′) = fkj (wj)

for all j < i; if so, he outputs the esti-
mate of f(x, y) = fki (w<i, (x, y), (X′>i,Y

′
>i)) given

by Πi(w<i, (x, y), (X′>i,Y
′
>i), R

′), and otherwise he
aborts. Let

Π̄(x, y, R̄) = Π(w<i, (x, y), (X′>i,Y
′
>i), R

′)

to denote the transcript exchanged with (and output of)
this protocol.

We first analyze the information revealed by the
protocol. Consider (W̄ , D̄) ∼ λ. Using the definition of
our random variables and the product structure of λk,
it follows by substitution of random variables that

I(Π̄(W̄ , R̄); W̄ | D̄)

= I(Π(W, R);Wi | Di,D−i = d−i,W<i = w<i),

which gives the second part of the lemma.
For the correctness of the protocol, let the set G

be defined as in Lemma 2.1. Take any (w>i, r) ∈
G; we claim that, conditioned on ((X′>i,Y

′
>i), R

′) =
(w>i, r), the protocol Π̄ (δ/10, δ/k)-computes f (notice
that conditioned on ((X′>i,Y

′
>i), R

′) = (w>i, r) the
protocol is indeed a deterministic one). Since the event
((X′>i,Y

′
>i), R

′) ∈ G only depends on the randomness
of the protocol, and since Pr(((X′>i,Y

′
>i), R

′) ∈ G) ≥
1−1/20, this implies that Π̄ (1/20, δ/10, δ/k)-computes
f .

To prove the claim, let E denote the event
((X′>i,Y

′
>i), R

′) = (w>i, r). It follows again from the
definition of our random variables that the probability
that Π̄(X̄, Ȳ , R̄) aborts conditioned on E is equal to
the probability that Π<i(w<iW≥i, R) 6= fk<i(w<iW≥i)
conditioned on (D−i,W>i, R) = (d−i,w>i, r). Using
the mutual independence between Wi, W>i and R, this
is the same as the probability that Π<i(w<iWiw>i, r) 6=
fk<i(w<iWiw≥i); by definition of G (Item 3 of Lemma
2.1), this probability is at most δ/10. Similarly, we ob-
tain that

Pr
[
Π̄(W̄ , R̄) 6= f(W ′) | Π̄ does not abort, E

]
= Pr

[
Πi(w<iW≥i, R) 6= fki (w<iW≥i) |

Π<i(w<iW≥i, R) = fk<i(w<iW≥i),

(D−i,W>i, R) = (d−i,w>i, r)] ≤
δ

k
,

where the last inequality follows again from the product
structure of λk, independence of R from the other
random variables, and from the definition of G. This
proves the claim and shows that Π̄ (1/20, δ/10, δ/k)-
computes f , giving the second item in the lemma.

Finally, notice that if Π is one-way then Π̄ is also
one-way. This concludes the proof of the lemma. �

The previous lemma (averaged out over all d−i),
together with the first part of Lemma 2.1, gives that



for every good index i ∈ [k] we can lower bound
I(Π(W, R);Wi | D,W<i) by 1

4 ICµ, 1
20 ,

δ
10 ,

δ
k

(f |ν). Since

at least half of the i’s in [k] are good, plugging
this bound on (2.2) gives that ICµk, δ

2000
(fk|νk) ≥

k
8 ICµ, 1

20 ,
δ
10 ,

δ
k

(f |ν), and similarly for the one-way infor-

mation complexity. This concludes the proof of Theo-
rem 2.1.

3 Lower Bounds for Protocols with Abortion

In this section we prove lower bounds on the informa-
tion cost of one-way protocols with abortion. To il-
lustrate the techniques, we first consider the equality
problem. In order to make the argument more for-
mal, we introduce the following formalization of one-
way protocols. Alice has a (possibly random) function
M : X → M and Bob has a (also possibly random)
function B :M×Y → Z that depends on the received
message and on its input, and B(M(x), y) is the es-
timate for f(x, y) output by Bob. Consider the aug-
mented space X × Y × D and let λ be a distribution
on it that has marginal µ over X × Y and marginal
ν over D. Notice that, whenever ν partitions µ, the
conditional information cost of the protocol (M,B) is
given by I(M(X);X | D) = I(M(X);X,Y | D), where
(X,Y,D) ∼ λ. For such distributions, IC→µ,δ(f |ν) is
the minimum of I(M(X);X | D) over all one-way δ-
protocols (M,B) for f .

3.1 Equality Problem Let EQ` denote the equality
problem: Alice and Bob have respectively the binary
strings x and y of length ` and their goal is to check
whether x = y or not.

Lemma 3.1. For ` = log(1/20δ), with δ ∈ (0, 1), there
exists a distribution with marginals µ and ν, such that
ν partitions µ and

IC→µ, 1
20 ,

1
10 ,δ

(EQ`|ν) = Ω (log(1/δ)) .

Proof. To construct µ and ν, let D0 be a random
variable uniformly distributed on {0, 1} and let D be
a random variable uniformly distributed on {0, 1}`. Let
(X,Y) be a random variable supported on {0, 1}` ×
{0, 1}` such that, conditioned on D0 = 0 we have X and
Y distributed independently and uniformly on {0, 1}`,
and conditioned on D0 = 1 we have X = Y = D.
Let µ be the distribution of (X,Y) and let ν be the
distribution of (D0D). Note that ν partitions µ.

Consider a one-way protocol Π for EQ` and let M
denote Alice’s message function. Since X and Y are
independent conditioned on D0D, we have

I(M(X);X,Y | D0D) = I(M(X);X | D0D)

= H(X | D0D)−H(X |M(X), D0D).

Notice that H(X | D0D) ≥ 1
2 H(X | D0 = 0,D) =

1
2 log(1/20δ).

From Fano’s inequality [13] we also have

H(X |M(X), D0D) ≤ H(X |M(X)) ≤ 1+pe log(|supp(X)|),

where pe = ming Pr[g(M(X)) 6= X] is the minimum
error over all predictors g. Thus, to prove the lemma it
suffices to show that if Π (1/20, 1/10, δ)-computes EQ`

then we can obtain a predictor with error at most 2/5.
First assume Π is a deterministic protocol that

(1/10, δ)-computes EQ`. We say that an input x for
Alice is good if Π(x,y) = 1 iff x = y; we claim that
many inputs are good. Note that the probability mass
that our distribution assigns to every input (x,x) is

p1 = Pr[D0 = 0] Pr[X = Y = x | D0 = 0]

+ Pr[D0 = 1] Pr[X = Y = x | D0 = 1] = 200δ2 + 10δ.

The probability assigned to every input (x,y) for x 6= y
is equal to p2 = 200δ2. So the number of x’s such
that Π(x,x) = abort is at most Pr[Π = abort]/p1 =
1/(10p1) ≤ 1/(100δ). Similarly, the number of x’s such
that there is at least one y where the protocol does not
abort but makes a mistake is at most Pr[Π 6= EQ`,Π 6=
abort]/p2 ≤ δ/(200δ2) = 1/(200δ). Finally notice that
if x does not satisfy either of these two conditions then
x is good. This implies that there are at most 3

200δ not
good x’s, and hence the probability that X is not good
is at most 3/10.

Now notice that if x is good then we can recover x
itself from M(x) using Π: simply find the unique y such
that Bob outputs 1 upon receiving message M(x). This
then gives a predictor g with error probability pe ≤ 3/10
as desired.

For the case where Π only (1/20, 1/10, δ)-computes
EQ`, we can use the same argument as before and run
Bob’s part of the protocol over all y upon receiving
message M(x), but now we need Bob’s private coins RB

to do it. This gives a predictor for X using M(X) and
RB with error at most 3/10 + 1/20 ≤ 2/5, which shows
that H(X | M(X), D0D) = H(X | M(X), D0D, R

B) ≤
1 + 2

5 log(1/20δ). This concludes the proof. �

3.2 Augmented Indexing In order to obtain the
desired lower bound for our applications we need a
generalization of EQ`, namely the augmented indexing
problem on large domain with low error Inda(k,N),
presented in the introduction.

Theorem 3.1. Consider an integer k and a parame-
ter δ such that k is at least a sufficiently large con-
stant and δ ≤ 1

20k . Then there is a distribution
with marginals µ and ν such that ν partitions µ and
IC→µ, 1

20 ,
1
10 ,δ

(Inda(k,N)|ν) ≥ Ω (N log k).



In the remainder of this section we prove Theorem
3.1. To do so, we consider the following hard distribu-
tion for Inda(k,N). First we have the random variable
D uniformly distributed in [k]N and a random variable
D0 taking value 0 or 1 with equal probability. The dis-
tribution of Alice’s input is given by X and the distri-
bution of Bob’s input is given by (I,Y<I , Y ) as follows:
when D0 = 1, we set I uniformly at random from [N ],
Y<I = X<I = D<I , Y = XI = DI and X>I uniformly
in [k]N−I ; when D0 = 0, we again set I uniformly at
random from [N ], Y<I = X<I = D<I , X>I uniformly
in [k]N−I , but now Y and XI are picked independently
and uniformly at random in [k].

Let λ denote the joint distribution of
(X, I,Y<I , Y,D0,D≤I), with marginal µ over
(X, I,Y<I , Y ) and marginal ν over (D0,D≤I) (notice
that the we use D≤I and not D). We remark that µ is
partitioned by ν.

Now we show that Theorem 3.1 holds with the dis-
tribution defined above. For that, consider a private-
randomness one-way protocol given by Alice’s mes-
sage function M and Bob’s output function B that
(1/20, 1/10, δ)-computes Inda(k,N) with respect to µ
and has conditional information cost I(M(X);X |
D0D≤I) = IC→µ, 1

20 ,
1
10 ,δ

(Inda(k,N) | ν). We show

that the mutual information I(M(X);X | D0D≤I) is
Ω(N log k).

First, using the chain rule for mutual information,
we express the above conditional information in terms
of the conditional information of each Xi revealed by
M(X):

I(M(X);X | D0D≤I) =

N∑
i=1

I(M(X);Xi | D0D≤I ,X<i)(3.3)

=

N∑
i=1

H(Xi | D0D≤I ,X<i)−
N∑
i=1

H(Xi |M(X), D0D≤I ,X<i).

We first claim that for each i, the term H(Xi |
D0D≤I ,X<i) is at least ( 1

2N + i−1
N ) log k. To see this,

notice that conditioned on I = i and D0 = 0, Xi is
independent of D≤I , and H(Xi | D0 = 0,D≤I ,X<i, I =
i) = log k. Similarly, conditioned on I < i, Xi is
independent of D≤I and hence H(Xi | D0D≤I ,X<i, I <
i) = log k. Since the first event holds with probability
1/2N and the second holds with probability (i− 1)/N ,
it follows that H(Xi | D0D≤I ,X<i) ≥ ( 1

2N + i−1
N ) log k.

Adding over all i’s then gives that

N∑
i=1

H(Xi | D0D≤I ,X<i) ≥
N

2
log k.

Now we need to upper bound the second summation
in (3.3). For that, we will show that the guarantee
of the protocol implies that M(X) together with the
prefix X<i leads to a good predictor of Xi (for most

i’s); an application of Fano’s inequality will then give
the desired upper bound.

To make things more explicit, let RA and RB denote
respectively Alice’s and Bob’s private randomness, and
define R = (RA, RB). To simplify the notation we use
Π(x, j, y, r) to denote the transcript (and, as usual, also
the output) of the protocol when Alice get x, Bob gets
(j,x<j , y) and the random seed is r = (rA, rB), namely
Π(x, j, y, r) = B(M(X, rA), j,x≤j , y, r

B). We also
use f(x, j, y) to denote the function of the associated
communication game, namely f(x, j, y) equals 0 if xj 6=
y and 1 if xj = y.

We first focus on tuples (i,x, r) that allows for a
good predictor of xi. To capture the bad tuples, let
U1 be the set of tuples (i,x, r) such that the protocol
with random seed r aborts on the instances where Alice
has input x and Bob has input (i,x<i,xi) (so it is an
‘equal’ input), namely U1 = {(i,x, r) : Π(x, i, xi, r) =
‘abort’}. Also define U2 as the tuples (i,x, r) where

the protocol with random seed r makes a mistake (but
does not abort) when Alice gets input x and Bob gets
input (i,x<i, y) for some y, namely U2 = {(i,x, r) :
∃y st Π(x, i, y, r) 6= f(x, i, y) and Π(x, i, y, r) 6= abort}.
We say that a tuple (i,x, r) is good if it does not belong
to either U1 or U2.

Notice that if (i,x, r) is good, then: (i)
Π(x, i, xi, r) = 1; (ii) for every y 6= xi, Π(x, i, y, r) 6= 1.
Good tuples render a good predictor for Xi.

Lemma 3.2. For every index i ∈ [N ], there is a predic-
tor gi such that

Pr
[
gi(M(X, RA),X<i) = Xi

]
≥ Pr((i,X, R) is good).

Proof. We are first going to use the protocol and the
information M(x, r),x<i, r

B to estimate xi as follows:
let g̃i(M(x, rA),x<i, r

B) be any value y such that
Π(x, i, y, r) = B(M(x, rA), i,x<i, y, r

B) = 1. (If no
such y exists, set the function value to any arbitrary
value). It follows directly from the paragraph before the
statement of the lemma that g̃i(M(x, r),x<i, r

B) = xi
for all good (i,x, r), and hence

E
RB

[
Pr
[
g̃i(M(X, RA),X<i, R

B) = Xi
]]

= Pr
[
g̃i(M(X, RA),X<i, R

B) = Xi
]
≥ Pr((i,X, R) is good).

To remove the dependence on RB , simply choose an
outcome rB such that

Pr
[
g̃i(M(X, RA),X<i, r

B) = Xi

]
≥ Pr((i,X, R) is good),

and set gi(m,x<i) = g̃i(m,x<i, r
B). �



Using this lemma and Fano’s inequality [13], we
obtain that

N∑
i=1

H(Xi |M(X, RA), D0D≤I ,X<i)

≤ N + log k

N∑
i=1

Pr((i,X, R) is not good).

Since we have assumed that k is at least a suf-
ficiently large constant, it suffices to show that∑N
i=1 Pr((i,X, R) is not good) ≤ 9N/20. The following

lemma then concludes the proof.

Lemma 3.3. Pr((I,X, R) is not good) ≤ 9/20.

Proof. Using the union bound, we get that the probabil-
ity that (I,X, R) is not good is at most the probability
that it belongs to U1 plus the probability that it be-
longs to U2. We claim that Pr((I,X, R) ∈ U1) ≤ 3/10.
Using the definition of U1 and the fact that the ran-
dom variable (X, I,XI , R) has the same distribution as
(X, I, Y,R)|(D0 = 1), we get that

Pr((I,X, R) ∈ U1) = Pr(Π(X, I,XI , R) = abort)

= Pr(Π(X, I, Y,R) = abort | D0 = 1)

= Pr(protocol aborts | D0 = 1).

Furthermore, since the protocol (1/20, 1/10, δ)-
computes f , by union bound we see that the proba-
bility that it aborts is at most 3/20. Therefore, using
the fact that Pr(D0 = 1) = 1/2, we directly get that
Pr((I,X, R) ∈ U1) ≤ 3/10.

Now we claim that the second term Pr((I,X, R) ∈
U2) is at most 3/20. To do so, let C denote the event
(which is solely determined by the random seed R)
that the protocol (1/10, δ)-computes f . Given that C
happens with probability at least 1/20, to prove the
claim it suffices to show Pr((I,X, R) ∈ U2 | C) ≤ 1/10.
For that, let Err denote the event that Π(X, I, Y,R) 6=
f(X, I, Y ) and Π(X, I, Y,R) 6= abort. Similar to the
previous case, using the definition of U2 and the fact
that the random variable (X, I, y, R)|C has the same
distribution as (X, I, Y,R)|(D0 = 0, Y = y, C), we get

Pr((I,X, R) ∈ U2 | C) =

Pr

 ∨
y∈[k]

(Π(X, I, y, R) 6= f(X, I, y) and Π(X, I, y, R) 6= abort) |C


≤

∑
y∈[k]

Pr (Err | D0 = 0, Y = y, C)

= k · E
Y

[Pr (Err | D0 = 0, Y, C) | D0 = 0, C]

= k · Pr (Err | D0 = 0, C) ,

where the second equality follows from the fact that
Pr(Y = y | D0 = 0, C) = Pr(Y = y | D0 = 0) = 1/k for
all y.

By definition of C, we have that Pr(Err | C) ≤ δ, so
using the fact that Pr(D0 = 0 | C) = Pr(D0 = 0) = 1/2

we obtain that Pr(Err | D0 = 0, C) ≤ 2δ. Plugging this
bound in the last displayed equation and using the fact
that δ ≤ 1/20k, we get that Pr((I,X, R) ∈ U2 | C) ≤
1/10 as desired. This concludes the proof of the lemma.
�

4 Applications

For our application we will often assume that the
dimension d of the vectors that we consider satisfies
d1−γ ≥ 1

ε2 log n
δ for some constant γ > 0 (where n is

the number of copies of the communication problem),
otherwise Alive can simply send her whole input to Bob.

All of our lower bounds come from a reduction to
the same hard problem, which is an n-fold version of the
augmented indexing problem with a further indexing on
top of it.

4.1 Hard Problem During our reductions it will be
more convenient to work with a different reformulation
of the augmented indexing problem Inda(u,N). In
this new problem, Alice has a set S ⊆ [1/(ε2δ)] of
size exactly 1/ε2, where the i-th element is required to

belong to the range [ (i−1)
δ +1, iδ ] (so S selects an integral

element from each interval [ (i−1)
δ +1, iδ ] with i ∈ [1/ε2]).

Bob has an element k ∈ [1/(ε2δ)] and also the set S′ ⊆ S
consisting of the elements in S which are strictly smaller
than k. Their goal is to decide whether k belongs to S
or not. Denote this problem by SetInd(ε, δ).

We claim that the problem SetInd(ε, δ) is equivalent
to the problem Inda(u,N) with N = 1/ε2 and universe
size u = 1/δ. To see this, given elements x1, x2, . . . , xN
in [u], we can “concatenate” them to form the set
{x1, u+ x2, . . . , (N − 1)u+ xN} ⊆ [1/(ε2δ)]. Therefore,
given an instance of Inda(u,N) it is easy to construct an
instance of SetInd(ε, δ) (with the same yes/no answer)
using this concatenation. Moreover, we can reverse this
operation and use it to obtain the reverse mapping from
an instance of SetInd(ε, δ) to an instance of Inda(u,N).

Using this correspondence, Theorem 3.1 directly
gives the following.

Corollary 4.1. Assume that δ is at most a suffi-
ciently small constant. Then there is a distribution
with marginals µ and ν such that ν partitions µ and
IC→µ, 1

20 ,
1
10 ,δ

(SetInd(ε, δ) | ν) ≥ Ω( 1
ε2 log 1

δ ).

Now we consider the n-fold version of this problem:
Alice and Bob receive n instances of SetInd(ε, δ/n) and
they want, with probability at least 1− δ, to solve all of
them. Denote this problem by nSetInd(ε, δ). Our direct
sum theorem directly gives the following.

Corollary 4.2. Assume that δ is at most a suffi-
ciently small constant. Then there is a distribution



with marginals µ and ν such that ν partitions µ and
IC→µn,δ(nSetInd(ε, δ)|νn) ≥ Ω(n 1

ε2 log n
δ ).

Finally, we take an augmented indexing of r
copies of this problem to obtain our hard prob-
lem Ind(nSetInd(ε, δ), r). More precisely, an instance
of Ind(nSetInd(ε, δ), r) is obtained as follows: con-
sider r instances (SA1 ,SB1 ), . . . , (SAr ,SBr ) of nSetInd(ε, δ)
(where SAi and SBi denote respectively Alice’s and
Bob’s part of the input); then Alice receives SA1 , . . . ,SAr
and Bob receives and index j and the collections
SA1 , . . . ,SAj−1 and SBj ; their goal is to solve the instance

(SAj ,SBj ).
The following lower bound follows from Corollary

4.2 and standard direct sum arguments; for complete-
ness we present a proof in Section B.1 of the appendix.

Corollary 4.3. Assume that δ is at most a suffi-
ciently small constant. Then there is a distribution
with marginals µ and ν such that ν partitions µ and
IC→µ,δ(Ind(nSetInd(ε, δ), r)|ν) ≥ Ω(r · n 1

ε2 log n
δ ).

4.2 Estimating Multiple `p Distances Consider
the following communication problem: Alice has n
vectors v1,v2, . . . ,vn ∈ [±M ]d, Bob has n vectors
u1,u2, . . . ,un ∈ [±M ]d, and their goal is to compute
(with probability at least 1 − δ) approximations (1 ±
ε)‖ui − vi‖p to the `p distances for all i ∈ [n]. Let
`p(n, d,M, ε) denote this problem.

Theorem 4.1. Assume that n is at least a sufficiently
large constant and that ε is at most a sufficiently small
constant. Also assume that there is a constant γ > 0
such that d1−γ ≥ 1

ε2 log n
δ . Then R→δ (`p(n, d,M, ε)) ≥

Ω
(
n 1
ε2 log n

δ (log d+ logM))
)

for p ∈ {1, 2}.

In the remaining part of this section we prove
the above theorem. Since we can amplify the success
probability of a protocol by repeating it and taking
majority (see Section A), we will assume throughout
that δ is at most a sufficiently small constant. We
separately obtain the lower bound Ω(n 1

ε2 log n
δ log d)

when the alphabet M is small (Lemma 4.1) and the
lower bound Ω(n 1

ε2 log n
δ logM) when the alphabet is

large (Lemma 4.3). It is easy to verify that together
these lemmas imply Theorem 4.1.

Lower Bound for Small Alphabet Size. We
consider the problem with M = 1 and prove the
following.

Lemma 4.1. Assume that n is at least a sufficiently
large constant, δ is at most a sufficiently small constant
and ε ≤ 1/25. Also assume that there is a constant γ >
0 such that d1−γ ≥ 1

ε2 log n
δ . Then R→δ (`p(n, d, 1, ε)) ≥

Ω
(
n 1
ε2 log n

δ log d)
)

for p ∈ {1, 2}.

To prove this lemma, we show how to use the n-fold
`p approximation problem `p(n, d, 1, ε/25) to solve the
indexing problem Ind(nSetInd(2ε, δ), c log d), for some
constant c. The main component of the reduction is the
following lemma, which is a special case of Lemma 3.1
in [23]; although in [23] the authors present the lemma
for instances of the problem Inda(k,N), the equivalence
between this problem and SetInd(ε, δ) directly gives the
following.

Lemma 4.2. ([23]) Given ε, η ∈ (0, 1], consider subsets
S1, S2, . . . , Sr of [1/(4ε2η)], each of size 1/4ε2 (assumed
to be odd). Also consider an index j ∈ [r] and an
element k ∈ [1/(4ε2η)] and let S′ be the set consisting
of all the elements of Sj that are smaller than k. Then
there is an encoding of these objects, based on a random
variable R, into vectors u = u(S1, S2, . . . , Sr, R) and
v = v(S1, S2, . . . , Sj−1, S′, j, k, R) with the following
properties:

1. The vectors u and v belong to {0, 1}d′ , where d′ =
O(10r 1

ε2 log 1
η ).

2. If k does not belong to the set Sj, then with
probability at least 1 − η we have ‖u − v‖pp ≥
d′10−j+1( 1

2 −
3ε
10 ) for all p > 0.

3. If k belongs to the set Sj, then with probability at
least 1 − η we have ‖u − v‖pp ≤ d′10−j+1( 1

2 −
6ε
10 )

for all p > 0

Using this lemma, the reduction of
Ind(nSetInd(2ε, δ), c log d) (for some constant c to
be determined) to `p(n, d, 1, ε/25) (where Alice and
Bob have shared randomness) is straightforward. Let
Alice’s instance for Ind(nSetInd(2ε, δ), c log d) be given
by the sets {S`i }i∈[n],`∈[c log d], where for a fixed ` the sets

S`1, S
`
2, . . . , S

`
n correspond to the `’th copy of the n-fold

problem in the indexing of Ind(nSetInd(2ε, δ), c log d);
unraveling the definition of the problem, we get that
each S`i is a subset of [ n

4ε2δ ] of size 1/4ε2. Similarly, let
Bob’s instance be given by the index j ∈ [c log d], the
elements k1, k2, . . . , kn, the sets {S`i }i∈[n],`<j and the
sets S′1, S

′
2, . . . , S

′
n; again unraveling the definitions we

have that for all i the set S′i consists of all the elements

of Sji less than ki. The players want to decide whether

ki ∈ Sji holds or not for all i.
For that, they evoke Lemma 4.2 with η = δ/n and

use their inputs and shared randomness to make Alice
compute ui = ui(S

1
i , S

2
i , . . . , S

c log d
i , R) for each i, and

make Bob compute vi = vi(S
1
i , S

2
i , . . . , S

j−1
i , S′i, j, k, R)

for each i. Notice that these vectors have O(dc 1
ε2 log n

δ )
coordinates, so we can use the fact d1−γ ≥ 1

ε2 log n
δ to

set the constant c to be small enough (depending on



γ) so that these vectors have at most d coordinates.
Then Alice and Bob use a protocol for `p(n, d, 2, ε/25)
to obtain with probability 1−δ an approximation vali =
(1± ε

10 )‖ui − vi‖pp for all i. Based on Items 2 and 3 of

Lemma 4.2, Bob then outputs that ki belongs to Sji iff
vali ≤ d10−j+1( 1

2 −
5ε
10 ).

It is easy to see that whenever both the
guarantees of Lemma 4.2 hold for all n pairs
{(ui,vi)}ni=1 and the protocol for `p(n, d, 1, ε/25) suc-
ceeds, then Bob outputs the correct answer. Since
this happens with probability at least 1 − 2δ,
we obtain the lower bound R→δ (`p(n, d, 1, ε/25)) ≥
R→,pub

2δ (Ind(nSetInd(2ε, δ), c log d))), where shared ran-
domness is allowed.

A well-know result relates the randomized complex-
ity of private-randomness and shared-randomness pro-
tocols (using the assumption that δ is sufficiently small)
[27]:

R→4δ(f) ≤ R→,pub
2δ (f) +O(log I + log 1

δ ),(4.4)

where I denotes the bit size of the input. Us-
ing this bound and employing our lower bound on
R→4δ(Ind(nSetInd(2ε, δ), c log d)) given by Corollary 4.3,
we obtain that

R→,pub2δ (Ind(nSetInd(2ε, δ), c log d))

≥ R→4δ(Ind(nSetInd(2ε, δ), c log d))−O
(

log
( n
εδ

+ log d
))

≥ Ω(n 1
ε2

log n
δ

log d),

where the last inequality uses the fact that n is at least
a sufficiently large constant. This concludes the proof
of Lemma 4.1.

Lower Bound for Large Alphabet Size. In this
part we prove the following.

Lemma 4.3. Assume that n is at least a sufficiently
large constant, δ is at most a sufficiently small con-
stant and ε ≤ 1/75. Also assume that d ≥
Ω( 1

ε2 log n
δ ) and that there is a constant γ > 0 such

that M1−γ ≥ d
ε3 log n

δ . Then R→δ (`p(n, d,M, ε)) ≥
Ω
(

1
ε2n log n logM)

)
for p ∈ {1, 2}.

For that, we need two specific statements of JL-type
transforms.

Theorem 4.2. [1] Let V be an arbitrary set of n points
in Rd and consider k ≥ C 1

ε2 log n
δ for some sufficiently

large constant C. Let S be a k × d matrix with entries
picked independently uniformly from {−1/

√
k, 1/
√
k}.

Then with probability at least 1−δ we have ‖Su−Sv‖22 =
(1± ε)‖u− v‖22 for all u, v ∈ V .

Lemma 4.4. (`2 → `1 JL) Let V be an arbitrary set
of n points in Rd and consider k ≥ C 1

ε2 log n
δ for

some sufficiently large constant C. Let S be a k × d
matrix with entries picked independently uniformly from
the centered normal distribution with standard deviation
1/k. Then with probability at least 1 − δ we have
‖Su− Sv‖1 = (1± ε)‖u− v‖2 for all u, v ∈ V .

Proof. [Proof sketch] This result is essentially proved
in [29]. More precisely, consider a vector x ∈ Rd with
‖x‖ = 1 and define Yi = kSix, where Si is the i-th row
of S. By 2-stability of the normal distribution, Yi is also
normal with variance 1. The proof then follows exactly
as in the proof of Theorem 5.1 of [29]. �

Again the lower bound is proved using a reduc-
tion from the indexing problem Ind(nSetInd(ε, δ), r),
but now with r set to c logM , for some constant c
to be determined later. Indeed, we simply modify
the reduction above as follows, starting with the `2
case. Assume for now that the players can use shared
randomness. As before, the players evoke Lemma
4.2 with η = δ/2n and make Alice compute ui =

ui(S
1
i , S

2
i , . . . , S

c logM
i , R) for each i, and make Bob

compute vi = vi(S
1
i , S

2
i , . . . , S

j−1
i , S′i, j, k, R) for each

i. These vectors have O(M c 1
ε2 log n) coordinates, which

is O(M) for small enough c by our assumption that
M1−γ ≥ d

ε3 log n
δ . Now the players use their shared

randomness to apply the JL transform from Theorem
4.2 and obtain the vectors {u′i}i and {v′i}i satisfying
the following: (i) with probability at least 1 − δ/2
we have ‖u′i − v′i‖22 = (1 ± ε

20 )‖ui − vi‖22 for all
i ∈ [n]; (ii) the dimension of each of these vectors
is O( 1

ε2 log n
δ ), which is O(d) due to the assumption

d ≥ Ω( 1
ε2 log n

δ ); (iii) all entries of these vectors belong

to the set 0,±1/
√
k, . . . ,±O(M/

√
k).

Then Alice and Bob can use a protocol for
`2(n,O(d), O(M), ε/50) that succeeds with probability
1−δ to compute (1± ε

20 ) approximations to the distances

‖u′i−v′i‖22 for all i and decide whether ki belongs to Sji or
not for every i just as before. It is easy to see that Alice
and Bob will report the right answer with probability at
least 1− 2δ, and hence R→δ (`2(n,O(d), O(M), ε/50)) ≥
R→,pub

2δ (Ind(nSetInd(2ε, δ), c logM))). Again using
(4.4) and Corollary 4.3 concludes the proof of Lemma
4.3 for the case `2.

For the case of `1 distance again the players evoke
Lemma 4.2 with η = δ/2n and make Alice compute

ui = ui(S
1
i , S

2
i , . . . , S

c logM
i , R) for each i, and make

Bob compute vi = vi(S
1
i , S

2
i , . . . , S

j−1
i , S′i, j, k, R) for

each i. Again that these vectors have O(M c 1
ε2 log n) =

O(εM/d) coordinates for small enough c (due to our
assumption on M). Now for each i they use their
shared randomness to obtain a matrix S with d′ =
O( 1

ε2 log n
δ ) = O(d) columns satisfying the guarantees



from Lemma 4.4 (with approximation factor (1± ε
75 ) and

success probability 1−δ). Then for all i Alice computes
the vector ũi by taking Sui and rounding each entry
to the closest additive multiple of ε/75d′, and Bob can
compute ṽi similarly. One can then verify that with
probability 1−δ we have ‖ũi−ṽi‖1 = (1± 2ε

75 )‖ui−vi‖2
(see for instance Section C.1). Then Alice checks if
‖ũi‖∞ ≤ 2‖ui‖22 (which is O(εM/d)) for all i; if so,
she and Bob use a protocol for `1(n,O(d), O(M), ε/75)
to compute (1±ε/75)‖ũi−ṽi‖1 for all i with probability
1 − δ. It is easy to see that with probability at
least 1 − 2δ Alice and Bob compute an approximation
(1± ε

10 )‖ui−vi‖22 for all i, which can be used as before
to solve their instance of Ind(nSetInd(2ε, δ), c logM)).
The proof of the lemma then follows just as in the `2
case.

4.3 Other Applications The proof of the lower
bound for the remaining applications is similar in spirit
to that of Theorem 4.1, and are presented in Section C
of the appendix.

JL Transforms. The main result of this section
is an optimal lower bound on the dimension of a JL
transform.

Definition 4.1. A family F of k × d matrices to-
gether with a distribution µ on F forms a Johnson-
Lindenstrauss transform with parameters ε, δ, n, d (or
JLT(ε, δ, n, d) for short), if the following holds for S ∼
µ: for any set V of n vectors in Rd, for all u,v ∈ V we
have (1− ε)‖u− v‖2 ≤ ‖Su− Sv‖2 ≤ (1 + ε)‖u− v‖2
with probability at least 1 − δ. We say that k is the
dimension of the transform.

Theorem 4.3. Assume that n is at least a sufficiently
large constant and that ε is at most a sufficiently small
constant. Also assume that there is a constant γ > 0
such that d1−γ ≥ 1

ε2 log n
δ . Then any JLT(ε, δ, n, d)

has dimension at least Ω( 1
ε2 log n

δ ). Moreover, this holds
even if the guarantees of the transform only need to hold
for vectors in {−1, 0, 1}d.

Sketching Multiple Inner Products. Consider
the following communication problem: Alice has n vec-
tors u1,u2, . . . ,un ∈ [±M ]d and Bob has n vectors
v1,v2, . . . ,vn ∈ [±M ]d. Alice needs to send sketches
Su1, Su2, . . . , Sun of her vectors to Bob, who then
has to output (with probability at least 1 − δ) ap-
proximations 〈ui,vi〉 ± ε‖ui‖‖vi‖ for all i ∈ [n]. Let
Ip(n, d,M, ε) denote this problem.

Theorem 4.4. Assume that n is at least a sufficiently
large constant and that ε is at most a sufficiently
small constant. Also assume that there is a constant

γ > 0 such that (d logM)1−γ ≥ 1
ε2 log n

δ . Then
Rsketch
δ (Ip(n, d,M, ε)) ≥ Ω

(
n 1
ε2 log n

δ (log d+ logM)
)
.

Notice that the above lower bound requires the
protocol to be a sketching one: otherwise one can
apply a JL transform to reduce the dimension and use
`2 sampling to solve Ip(n, d,M, ε) with communication
Õ(n 1

ε2 log n
δ log log1+εM) [31, 11].

Matrix Sketching. Given a matrix A, we use Ai
to denotes its i-th row and use Aj to denote its j-th
column.

Theorem 4.5. Assume that n is a sufficiently large
constant and that ε is at most a sufficiently small
constant. Also assume that there is a constant γ > 0
such that n1−γ ≥ 1

ε2 log n
δ . Let S be a random n × k

matrix which has an estimation procedure f outputting
a matrix satisfying the following: for every pair of
matrices A,B ∈ [±M ]n×n, with probability at least
1 − δ we have f(AS,B)i,j = (AB)i,j ± ε‖Ai‖‖Bj‖
for all i, j ∈ [n]. Then the bit size of AS is at
least Ω(n 1

ε2 log n
δ (log n+ logM)). Moreover, if the

estimation is given by f(AS,B)i,j = (ASSTB)i,j, then
the dimension k is at least Ω( 1

ε2 log n
δ ).

Database Joins. We refer the reader to [4] for
more details about this application. Consider a
database consisting of n tables and multiple attributes,
with value domainD. LetM denote the maximum num-
ber of records over all these tables. Given attribute j in
table i, we use f ji (d) to denote the number of records in
table i whose value for attribute j is equal to d. We see
f ji as a vector in {0, 1, . . . ,M}|D|. Given attribute j in
table i and attribute j′ in table i′, the join size of these

attributes is gives by the inner product 〈f ji , f
j′

i′ 〉. For
simplicity, we assume that there is only one attribute
ji in each table i that we are interested in estimating
join sizes. We have the following bounds for estimating
these join sizes.

Theorem 4.6. Assume that n is at least a sufficiently
large constant and that ε is at most a sufficiently
small constant. Consider linear sketches of the n fre-
quency vectors f jii which allow the join size estimation

〈f jii , f
ji′
i′ 〉±ε‖f

ji
i ‖‖f

ji′
i′ ‖ for all i, i′ ∈ [n] with probability

at least δ. Then we have the following lower bounds for
the total bit size required by these sketches:

• If there is a constant γ > 0 such that
|D|1−γ ≥ 1

ε2 log n
δ , then we have the lower bound

Ω(n 1
ε2 log n

δ log |D|).

• If d ≥ n
ε2δ and M is at least a sufficiently

large constant, then we have the lower bound
Ω(n 1

ε2 log n
δ logM).



As mentioned earlier, the bounds above actually
lower bound the total size of computing a mergeable
summary for the n tables.
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A Information Cost When Amplifying Success
Probability

Consider a function f : X ×Y → Z and let λ be a distri-
bution over X ×Y×D, with marginals µ over X ×Y and
ν over D. We show that ICµ,δΩ(r)(f |ν) ≤ r ICµ,δ(f |ν).
For that, take a δ-protocol Π for f which achieves
I(Π;X,Y | D) = ICµ,δ(f |ν), where (X,Y,D) ∼ λ.
Then let Π̄ be the protocol on input (x, y) that runs
r copies Π(x, y,R1),Π(x, y,R2), . . . ,Π(x, y,Rr) with in-
dependent coins R1, R2, . . . , Rr and outputs the value
obtained by the majority of the runs.

It is easy to see that Π̄ outputs the correct answer
with probability at least 1 − δΩ(r). Moreover, by the
chain rule for mutual information, we have

ICµ,δΩ(r)(f |ν) ≤ I(Π̄;X,Y | D) =(A.1)

r∑
i=1

I [Π(X,Y,Ri);X,Y | D,Π(X,Y,R1), . . . ,Π(X,Y,Ri−1)] .

But we can expand the i-th term as

H [Π(X,Y,Ri) | D,Π(X,Y,R1), . . . ,Π(X,Y,Ri−1)]

−H [Π(X,Y,Ri) | D,Π(X,Y,R1), . . . ,Π(X,Y,Ri−1), X, Y ]

≤ H [Π(X,Y,Ri) | D]

−H [Π(X,Y,Ri) | D,Π(X,Y,R1), . . . ,Π(X,Y,Ri−1), X, Y ]

= H[Π(X,Y,Ri) | D]−H[Π(X,Y,Ri) | D,X, Y ]

= I[Π(X,Y,Ri);X,Y | D] = ICµ,δ(f |ν),

where the first equality follows from the fact that,
since the Rj ’s are independent, then conditioned
on (X,Y ) we have Π(X,Y,Ri) independent from
Π(X,Y,R1) . . . ,Π(X,Y,Ri−1). Plugging this bound on
equation (A.1) gives that ICµ,δΩ(r)(f |ν) ≤ r ICµ,δ(f |ν).

B Auxiliary Results for Lower Bounding
Applications

Before proving the lower bound for our applications, we
need to spell out some (standard) tools. In the next
two subsections, we introduce the hard communication
problem from there the lower bounds will come from.
This hard problem is essentially based on constructing
the n-fold version of augmented indexing and then doing
an extra indexing over it. In the following subsection,
we present, for completeness, an encoding of augmented
indexing into vectors whose inner product depends
whether the instance is yes/no; this was already present
in the proof of Lemma 3.1 of [23].

B.1 Generic Indexing problems A generic index-
ing problem can be defined as follows. Consider a func-
tion f : X ×Y → Z and the associated (one-way) com-
munication problem where Alice and Bob get respec-
tively an element of X and Y and want to compute the

value of the f over this pair; we use f to also denote
this problem. Let Ind(f,N) denote the communication
problem where Alice has input x1, x2, . . . xN ∈ X and
Bob has input j ∈ [N ], x1, x2, . . . , xj−1 ∈ X and y ∈ Y,
and they want to compute f(xj , y). To simplify the no-

tation, let X̃ = XN denote the space of Alice’s input,
let Ỹ =

⋃N−1
i=0 (N × X i × Y) denote the space of Bob’s

input.
It is folklore that the information complexity of an

indexing problem Ind(f,N) is typically Ω(N) times the
complexity of the base problem of computing f .

Lemma B.1. Let λ be a probability distribution over
X × Y × D with marginal µ on X × Y and marginal
ν on D, such that µ is partitioned by ν. Then there is
a distribution λ̃ over X̃ × Ỹ × D̃ (where D̃ = N × DN )
with the following property. Let µ̃ denote the marginal
of λ̃ on X̃ × Ỹ and let ν̃ denote the marginal of λ̃ on D̃.
Then for all δ ∈ [0, 1]

IC→µ̃,δ(Ind(f,N)|ν̃) ≥ N · IC→µ,δ(f |ν).

Moreover, ν̃ partitions µ̃.

To make the presentation self-contained, in the re-
maining part of this section we prove the above lemma.
For that, we start by constructing the distribution λ̃.
First let J be the uniform random variable over [N ],
and, to makes things formal, let D0 = J . Now let
the random variables X = (X1, X2, . . . , XN ), Y and
D = (D1, D2, . . . , DN ) have the following distribution:
conditioned on J = j, we have (Xj , Y,Dj) ∼ λ and
(Xi, Di) distributed according to the marginal of λ on
X ×D for all i 6= j (so the conditioning on J only spec-
ifies which variables will be correlated with Y ). The
distribution λ̃ is then defined as the distribution of the
random variable (X, (J,X<J , Y ), (D0,D)). It is easy to
see that ν̃ partitions µ̃.

Recall the notation for one-way protocols used in
Section 3. Consider a private-randomness one-way δ-
protocol (M,B) for Ind(f,N) (with Alice’s and Bob’s
private coins respectively denoted by RA and RB)
and attains IC→µ̃,δ(Ind(f,N)|ν̃); that is, for the random

variables above, we have I(M(X, RA);X | D0D) =
IC→µ̃,δ(Ind(f,N)|ν̃). We start lower bounding the left-
hand side.

First notice that the random variable (X, RA,D) is



independent of D0. Therefore, we have

I(M(X, RA);X | D0D) = I(M(X, RA);X | D)

=

N∑
j=1

I(M(X, RA);Xj | D,X<j)

=

N∑
j=1

I(M(X, RA);Xj | D≥j ,X<j)

=

N∑
j=1

∑
d>j ,x<j

I(M(X, RA);Xj | Dj ,D>j = d>j ,X<j = x<j)·

Pr(D>j = d>j ,X<j = x<j)

=

N∑
j=1

∑
d>j ,x<j

I(M(x<jX≥j , R
A);Xj | Dj ,D>j = d>j)·

Pr(D>j = d>j ,X<j = x<j),
(B.2)

where the second equality follows from the chain
rule for conditional mutual information, and the others
follows from the product structure of D and X and
independence from RA. Now we lower bound each term
in this expression using a standard simulation argument.

Claim 1. For every index j ∈ [N ] and fixing d>j and
x<j, there is a private-randomness one-way protocol
(M̄, B̄) with domain X × Y satisfying the following
(where R̄A and R̄B denote Alice’s and Bob’s private
coins respectively):

• (M̄, B̄) is a δ-protocol for f .

• For the random variable (X̄j , Ȳ , D̄j) ∼ λ, we have
I(M̄(X̄j , R̄

A); X̄j | D̄j) = I(M(x<jX≥j , R
A);Xj |

Dj ,D>j = d>j).

Proof. The desired protocol (M̄, B̄) is the following. Al-
ice uses her private randomness R̄A to obtain the ran-
dom variable R̃A with the same distribution as RA, and
also the random variable X̃>j with the same distribu-
tion as the conditioned random variable X>j | (D>j =
d>j); Bob uses his private randomness R̄B to obtain

the random variable R̃B with same distribution as RB .
Then for every input (x, y) ∈ X ×Y, we set Alice’s mes-
sage to be M̄(x, R̄A) = M(x<jxX̃>j , R̃

A) and Bob’s
output upon receiving message m is B̄(m, y, R̄B) =
B(m, j,x<j , y, R̃

B).
For every input (x, y) ∈ X ×Y, we can use the fact

(M,B) is a δ-protocol for Ind(f,N) to obtain that

1− δ ≤ Pr
[
B(M(x<jxX̃>j , R

A), j,x<j , y, R
B) = f(x, y)

]
= Pr((M̄, B̄) outputs f(x, y)),

where the equality follows from the definition of our
random variables. This gives the first part of the claim.

For the second part, let (X̄j , Ȳj , D̄j) ∼ λ. By the

definition of our random variables, (X̄jX̃>j , D̄j , R̃
A) has

the same distribution as (X≥j , Dj , R
A) | (D>j = d>j),

so by substitution we have

I(M̄(X̄j , R̄
A); X̄j | D̄j) = I(M(x<jX̄jX̃>j , R̃

A); X̄j | D̄j)

= I(M(x<jX≥j , R
A);Xj | Dj ,D>j = d>j),

which concludes the proof of the claim. �

Lemma B.1 then follows directly from the above
claim and equation (B.2).

B.2 Encoding of Indexing Over Augmented Set
Indexing In this section we present the following en-
coding of Ind(SetInd(ε, η), r), which was already present
in the proof of Lemma 3.1 in [23]. Notice that we con-
sider the problem Ind(SetInd(ε, η), r) and not the n-fold
problem Ind(nSetInd(ε, η), r), but we can use this en-
coding for each of the n copies present in the latter.

Lemma B.2. Given ε, η ∈ (0, 1], consider subsets
S1, S2, . . . , Sr of [1/(ε2η)], each of size 1/ε2 (assumed
to be odd). Also consider an index j ∈ [r] and an
element k ∈ [1/(ε2η)]. Then there is an encoding of
these objects, based on a random variable R, into vectors
u = u(S1, S2, . . . , Sr, R), u = u(S1, S2, . . . , Sj−1, R)
and v = v(j, k,R) with the following properties:

1. The vectors u,u and v belong to {0, 1}2t· 10r−1
9 ,

where t = 72
ε2 log 1

η .

2. ‖u− u‖2 ≤ 2 · 10r−jt and ‖v‖2 = 10r−jt.

3. If k does not belong to the set Sj, then with
probability at least 1 − η we have 〈u − u,v〉 ≤
10r−jt( 1

2 + ε
12 ).

4. If k belongs to the set Sj, then with probability at
least 1− η we have 〈u− u,v〉 ≥ 10r−jt( 1

2 + 2ε
12 ).

To prove this lemma, we first define and analyze an
encoding scheme for the case where we only have one
set, i.e., r = 1.

So consider a set S ⊆ [1/(ε2η)]. Let X be a uniform

random vector in {−1,+1}1/(ε2η). We define enc1(S,X)
to be the majority of the set {Xi}i∈S ; this is well-defined
since 1/ε2 is odd. We contrast this with the encoding
enc2(k,X) which is just the k-th component of X.

Notice that if k /∈ S, then the encodings are
independent and hence

Pr[enc1(S,X) = enc2(k,X)] = 1
2 .

On the other hand, suppose k ∈ S. Then, using the
fact that enc1(S,X) depends on only 1/ε2 coordinates



of X (since |S| = 1/ε2), standard arguments involving
the binomial coefficients give that

Pr[enc1(S,X) = enc2(k,X)] ≥ 1
2 (1 + ε

2 ).

We repeat the above scheme to amplify the gap
between the two cases. Let X = (X1,X2, . . . ,Xt) be a
collection of t = 72

ε2 log 1
η uniform i.i.d. random variables

in {−1,+1}1/(ε2η). Define

enc1(S,X) = (enc1(S,X1), enc1(S,X2), . . . , enc1(S,Xt)),

and

enc2(k,X) = (enc2(k,X1), enc2(k,X2), . . . , enc2(k,Xt)).

Fact B.1. (Chernoff bounds, [14]) Let
Y1, Y2, . . . , Yt be a collection of i.i.d. 0-1 Bernoulli
random variables with success probability p. Set
Ȳ =

∑t
i=1 Yi/t. Then,

Pr[X̄ < p− h] < exp(−2h2t), and

Pr[X̄ > p+ h] < exp(−2h2t).

In the above fact with t = 72
ε2 log 1

η and h = ε/12, we
obtain that the tail probabilities are at most η. In the
case k /∈ S we use p = 1

2 to get

(B.3) Pr[#(enc1(S,X), enc2(k,X)) > t( 1
2 + ε

12 )] ≤ η,

where # denotes the number of coordinates where the
vectors agree. In the case k ∈ S we use p = 1

2 (1 + ε
2 ) to

get

(B.4) Pr[#(enc1(S,X), enc2(k,X)) < t( 1
2 + 2ε

12 )] ≤ η.

Finally, we convert the ±1 vector enc1(S,X) (resp.
enc2(k,X)) into the 0/1 vector enc′1(S,X) (resp.
enc′2(k,X)) by replacing the occurrence of each 1
by the pattern 01 and the occurrence of each −1
by 10; so the new vectors have exactly twice as
many coordinates as the original ones. Moreover,
〈enc′1(S,X), enc′2(k,X)〉 = #(enc1(S,X), enc2(k,X))
and ‖enc′1(S,X)‖ = ‖enc′2(k,X))‖ =

√
t. Setting u =

enc′1(S,X), u = 0 and v = enc′2(k,X)) gives the desired
encoding for the case where we have only one set S.

Now we adapt this encoding to handle multiple sets.
For each i ∈ [r], define the vector ui ∈ {0, 1}10r−i2t by
appending 10r−i copies of enc′1(Si,X). Then define the
vector u by appending the vectors ui for i = 1, 2, . . . , r.
Also define the vector u by appending the vectors ui

for i = 1, 2, . . . , j − 1 and the appending 0’s to obtain a
vector with the same number of coordinates as u.

Now for each i ∈ [r] define the vector vi to be

equal to 0 ∈ {0, 1}10r−i2t if i 6= j, and to be equal

to 10r−j copies of enc′2(k,X) otherwise. Then define v
by appending the vectors vi for i = 1, 2, . . . , r.

It is easy to see that u, u and v have the desired
properties. First, notice that these vectors have exactly
2t
∑r
i=1 10r−i = 2t · 10r−1

9 coordinates. Also,

‖u− u‖2 =

r∑
i=j

‖ui‖2 =

r∑
i=j

10r−it ≤ 2 · 10r−jt

and ‖v‖2 = 10r−jt. Moreover,

〈u− u,v〉 = 〈uj ,vj〉 = 10r−j〈enc′1(Sj ,X), enc′2(k,X)〉.

Equations (B.3) and (B.4) conclude the proof of Lemma
B.2.

C Proof for Other Applications

C.1 Proof of Theorem 4.3 The proof follows the
same line as the proof of Theorem 4.3 in [23], where we
use a JL transform to provide a solution for the (n/2)-
fold `2 estimation.

Consider an instance of `2(n/2, d, 1, 4ε) where Alice
has vectors u1,u2, . . . ,un/2 ∈ {−1, 0, 1}d and Bob has
vectors v1,v2, . . . ,vn/2 ∈ {−1, 0, 1}d. We consider the
following shared-randomness protocol for this problem.
Let (F , µ) be a JLT(ε, δ, n, d) transform with dimension
k as small as possible. The players use their shared ran-
domness to agree upon a matrix S sampled from F ac-
cording to µ. Then Alice computes Su1, Su2, . . . , Sun/2

and stops if ‖Sui‖2 > (1+ε)‖ui‖2 for some i; otherwise,
she rounds each entry of these vectors to the nearest ad-
ditive multiple of ε/

√
k and sends the rounded vectors

{ũi}i to Bob. Bob then computes Sv1, Sv2, . . . , Svn/2

and rounds their entries just as Alice did to obtain the
vectors {ṽi}i. Finally Bob outputs ‖ũi − ṽi‖ for each
i ∈ [n/2].

By the triangle inequality,

‖ũi − ṽi‖ = ‖Sui − Svi‖ ±
(
‖ũi − Sui‖+ ‖ṽi − Svi‖

)
,

or using the definition of ũi and ṽi, ‖ũi − ṽi‖ =
‖Sui − Svi‖ ± ε. But notice that whenever ui = vi,
we have exactly ‖ũi − ṽi‖ = ‖Sui − Svi‖ = 0, and
ui 6= vi implies ‖ui − vi‖ ≥ 1 (because of the discrete
domain {−1, 0, 1}d). This then gives that

‖ũi − ṽi‖ = (1± ε)‖Sui − Svi‖.(C.5)

Now suppose ‖S(ui − vi)‖ = (1 ± 3ε)‖ui − vi‖
for all i and also ‖Sui‖2 = (1 ± ε)‖ui‖2 for all i,
which happens with probability at least 1 − 2δ. In
this case, it follows directly from equation (C.5) that
Bob outputs the desired estimate (1± 4ε)‖ui − vi‖ for
all i. Moreover, Alice does not send too many bits:



because the input vectors have entries in {−1, 0, 1},
‖Sui‖2 = (1 ± ε)‖ui‖2 ≤ 2d and so every entry of Sui

(in absolute value) is upper bounded by 2d; it then takes
Alice O

(
nk log

(
dk
ε

))
bits to send all ũi’s.

Therefore, the above protocol solves `2(n/2, d, 1, 4ε)
with probability at least 1 − 2δ and communication
O
(
nk log

(
dk
ε

))
, using shared randomness. But using

the lower bound that follows from Theorem 4.1 and
equation (4.4) (and the fact that n is sufficiently large),

we get R→,pub
2δ (`2(n/2, d, 1, 4ε)) ≥ Ω

(
n 1
ε2 log n

δ log d
)
.

The fact that k ≤ d and the assumption that (in
particular) d ≥ 1/ε give that k ≥ Ω( 1

ε2 log n
δ ) as desired.

C.2 Proof of Theorem 4.4 As in Section 4.2, we
obtain the lower bound by analyzing the case of small
and large alphabet sizes separately, and we also assume
without loss of generality that δ is at most a sufficiently
small constant.

Lower Bound For Small Alphabet Size. In
this section we consider M = 1 and obtain the following.

Lemma C.1. Assume that n is at least a sufficiently
large constant and that δ and ε are at most a suffi-
ciently small constant. Also assume that there is a
constant γ > 0 such that d1−γ ≥ 1

ε2 log n
δ . Then

Rsketch
δ (Ip(n, d, 1, ε)) ≥ Ω(n 1

ε2 log n
δ log d).

As in the problem of approximating the `2 norm,
the lower bound is again based on the problem
Ind(nSetInd(ε, δ), log d), but now the main element in
the reduction is the encoding provided by Lemma B.2.

We show how to use the n-fold inner product prob-
lem Ip(n, d, 1, ε/25) to solve Ind(nSetInd(ε, δ), c log d),
for a constant c depending on γ. As in Section
4.2, let Alice’s instance for Ind(nSetInd(ε, δ), c log d) be
given by the sets {S`i }i∈[n],`∈[c log d] and let Bob’s in-
stance be given by the index j ∈ [c log d], the ele-
ments k1, k2, . . . , kn, the sets {S`i }i∈[n],`<j and the sets
S′1, S

′
2, . . . , S

′
n (although we will ignore the latter sets).

They want to decide whether ki ∈ Sji holds or not for
each i ∈ [n].

To do so, independently for each i ∈ [n] the
players use the reduction from Lemma B.2 with success
probability η = δ/n and r = c log d to make Alice

obtain the vector ui = ui(S
1
i , S

2
i , . . . , S

c log d
i , R) and

Bob obtain the vectors ui = ui(S
1
i , S

2
i , . . . , S

j−1
i , R)

and vi = vi(j, ki, R), using their shared randomness
to simulate R. Notice that these vectors have at most
O(dc 1

ε2 log n
δ ) coordinates, which is at most O(d) for

a sufficiently small c depending only on γ. Then
the players can use a sketching protocol that solves
Ip(n,O(d), 1, ε/25) with success probability 1 − δ to
compute, for all i ∈ [n], vali = 〈ui − ui,vi〉 ± ε

25‖ui −
ui‖‖vi‖ = 〈ui − ui,vi〉 ± ε

2510r−jt, where t = 72
ε2 log n

δ ;

they do so by having Alice sending Bob the linear
sketches of the vectors ui’s, then Bob updating these
sketches to obtain sketches of the vectors {ui − ui}i,
and finally executing Bob’s part of the protocol to
approximate the values 〈ui − ui,vi〉. Having these
approximations at hand, for each i ∈ [n] Bob outputs
that ki ∈ Sji iff vali ≥ 10r−jt( 1

2 + 3ε
24 ).

Since the guarantees from Lemma B.2 hold for
all triples (uiui,vi) for i ∈ [n] with probability
at least 1 − δ, it is easy to see that Bob out-
puts the correct answer with probability at least 1 −
2δ. This implies that Rsketch

δ (Ip(n,O(d), 1, ε/25)) ≥
R→,pub

2δ (Ind(nSetInd(ε, δ), c log d). Corollary 4.3, equa-
tion (4.4) and the assumption that n is sufficiently large
conclude the proof of Lemma C.1.

Lower Bound for Small Dimension. In this
section we obtain the following bound.

Lemma C.2. Assume that n is at least a sufficiently
large constant and that δ and ε are at most a suf-
ficiently small constant. Also assume that d ≥
Ω( 1

ε2 log n
δ ) and that there is a constant γ > 0 such

that M1−γ ≥ 1
ε2 log n

δ . Then Rsketch
δ (Ip(n, d,M, ε)) ≥

Ω
(
n 1
ε2 log n

δ logM)
)
.

As observed, for instance, in [34], JL transforms also
approximate inner products.

Proposition C.1. Let (F , µ) be a JLT(ε, δ, n, d). Con-
sider S ∼ µ. Then for every collection of n vectors
u1,u2, . . . ,un in Rd, with probability at least 1 − δ we
have 〈Sui, Suj〉 = 〈ui,uj〉± ε‖ui‖‖uj‖ for all i, j ∈ [n].

Lemma C.2 is then obtained from the previous
reduction by applying the JL transform of Theorem 4.2
to the vectors ui, ui and vi, just as done in the second
part of Section 4.2.

C.3 Proof of Theorem 4.5 To prove the first part
of the theorem, notice that (AB)i,i ± ε‖Ai‖‖Bi‖ =
〈Ai, Bi〉± ε‖Ai‖‖Bi‖. Therefore, a sketch S that allows
(with probability at least 1 − δ) the approximation
(AB)i,j ± ‖Ai‖‖Bj‖ for all i, j ∈ [n] can be used
to solve the inner product problem Ip(n, n,M, ε) with
probability 1 − δ and communication equal to the bit
size of AS; the desired lower bound then follows directly
from Theorem 4.4.

For the second part of the theorem, we can set
B = AT to obtain (AAT )i,i±ε‖Ai‖2 = (1±ε)‖Ai‖2, and
hence the sketch S is a JLT(ε, δ, n, n); the lower bound
k ≥ Ω( 1

ε2 log n
δ ) then follows from Theorem 4.3.

C.4 Proof of Theorem 4.6 The lower bound of
Ω(n 1

ε2 log n
δ log |D|) follows directly from Lemma C.1



(notice that the hard instances in this lemma are
provided by {0, 1} vectors). However, the lower bound
Ω(n 1

ε2 log n
δ logM) does not follow directly from Lemma

C.2, because there the hard instances are given by
vectors which can have negative coordinates. The latter
lower bound comes from the following modification of
the hard instances for inner products.

Lemma C.3. Assume that n and M are at least a
sufficiently large constant and assume that δ and ε
are at most a sufficiently small constant. Also as-
sume that d ≥ n/(ε2δ). Then Rsketch

δ (Ip(n, d,M, ε)) ≥
Ω
(
n 1
ε2 log n

δ logM)
)
. Moreover, this holds even if

the protocol only offers guarantees for vectors in
{0, 1, . . . ,M}d.

Proof. Consider the problem Ind(nSetInd(ε, δ), logM).
Let Alice’s instance for this problem be given by the sets
{S`i }i∈[n],`∈[logM ], and let Bob’s instance be given by the
index j ∈ [logM ], the elements k1, k2, . . . , kn, the sets
{S`i }i∈[n],`<j and the sets S′1, S

′
2, . . . , S

′
n. They want to

decide whether ki ∈ Sji holds or not for each i. A trivial

but important observation is that ki ∈ Sji iff the inner

product 〈χSji , eki〉 equals 1, where χSji
∈ {0, 1}n/(ε2δ) is

the incidence vector of Sji and eki is the ki’th canonical
vector.

To solve this problem, for each i ∈ [n] Alice makes

the vector ui ,
∑logM
`=1 10logM−`χS`i , and for every

i ∈ [n] Bob makes the vectors ui ,
∑j−1
`=1 10logM−`χS`i

and vi , 10logM−jeki . Notice that the constructed
vectors lie in {0, 1, . . . ,M ′}d, where M ′ = M10 and
d = n/(ε2δ). Then using the shared randomness, Alice
runs a sketching protocol for Ip(n, d,M ′, ε/4) to send
Bob sketches Su1,Su2, . . . ,un that allows computation
of n-fold (ε/4)-approximations for dot products with
probability at least 1−δ. Then Bob updates the sketches
to obtain S(u1 − u1),S(u2 − u2), . . . ,S(un − un), and
use them to compute the inner product approximations
vali = 〈(ui − ui),vi〉 ± ε

4‖u
i − ui‖‖vi‖ for all i ∈ [n],

with probability at least 1 − δ. Finally, for each i Bob
reports that ki ∈ Sji iff vali ≥ 102(logM−j)/2.

We claim that: (i) 〈(ui − ui),vi〉 =

102(logM−j)〈χSji , eki〉 ± 102(logM−j)

9 and (ii)

‖ui − ui‖‖vi‖ ≤ 102(logM−j)+1

9ε ; since 〈χSji , eki〉
equals 1 if ki ∈ Sji and 0 otherwise, these bounds
show that the above protocol solves the instance of
Ind(nSetInd(ε), logM) with probability at least 1 − δ.

To prove (i), by bilinearity of inner products we have

〈(ui − ui),vi〉 =

logM∑
`=j

102 logM−`−j〈χS`i , eki〉

= 102(logM−j)〈χSji , eki〉 ±
102(logM−j)

9
,

where the inequality follows from the fact that
〈χS`i , eki〉 ≤ 1 for all i, `. To prove (ii), notice that

|S`i | = 1/ε2 and hence ‖χS`i ‖ = 1/ε for all i, `. Us-

ing triangle inequality, we obtain that ‖ui − ui‖ ≤
(1/ε)

∑logM
`=j 10logM−` ≤ 10logM−j+1

9ε . Since ‖vi‖ =

10logM−j , part (ii) directly follows.
The above protocol shows that

R→,pub
δ (Ind(nSetInd(ε), logM)) ≤

Rsketch
δ (Ip(n, d,M ′, ε/4)). Then Corollary 4.3 together

with equation (4.4) gives that Rsketch
δ (Ip(n, d,M, ε)) ≥

Ω(n 1
ε2 log n

δ logM) as desired. �


