
Parallel Algorithms for Geometric Graph Problems∗

Alexandr Andoni
Microsoft Research

Aleksandar Nikolov
Rutgers University

Krzysztof Onak
†

IBM Research
Grigory Yaroslavtsev

‡
ICERM, Brown University

ABSTRACT
We give algorithms for geometric graph problems in the
modern parallel models such as MapReduce. For example,
for the Minimum Spanning Tree (MST) problem over a set
of points in the two-dimensional space, our algorithm com-
putes a (1 + ε)-approximate MST. Our algorithms work in
a constant number of rounds of communication, while us-
ing total space and communication proportional to the size
of the data (linear space and near linear time algorithms).
In contrast, for general graphs, achieving the same result
for MST (or even connectivity) remains a challenging open
problem [9], despite drawing significant attention in recent
years.
We develop a general algorithmic framework that, besides

MST, also applies to Earth-Mover Distance (EMD) and the
transportation cost problem. Our algorithmic framework
has implications beyond the MapReduce model. For ex-
ample it yields a new algorithm for computing EMD cost
in the plane in near-linear time, n1+oε(1). We note that
while recently [33] have developed a near-linear time al-
gorithm for (1 + ε)-approximating EMD, our algorithm is
fundamentally different, and, for example, also solves the
transportation (cost) problem, raised as an open question in
[33]. Furthermore, our algorithm immediately gives a (1+ε)-
approximation algorithm with nδ space in the streaming-
with-sorting model with 1/δO(1) passes. As such, it is tempt-
ing to conjecture that the parallel models may also consti-
tute a concrete playground in the quest for efficient algo-
rithms for EMD (and other similar problems) in the vanilla
streaming model, a well-known open problem.

∗A full version of this paper is available at http://arxiv.
org/abs/1401.0042
†Supported by the Simons Postdoctoral Fellowship. Re-
search initiated while at CMU.‡Research initiated at Microsoft Research. The author was
also supported by the Institute Postdoctoral Fellowship in
Mathematics at Brown University, Institute for Computa-
tional and Experimental Research in Mathematics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
STOC ’14, May 31 - June 03 2014, New York, NY, USA
Copyright 2014 ACM 978-1-4503-2710-7/14/05. . . $15.00.
http://dx.doi.org/10.1145/2591796.2591805

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2.2 [Discrete
Mathematics]: Graph Theory

Keywords
parallel computation, minimum spanning tree, earth-mover
distance, MapReduce

1. INTRODUCTION
Over the past decade a number of parallel systems have

become widely successful in practice. Examples of such sys-
tems include MapReduce [13, 14], Hadoop [39], and Dryad
[26]. Given these developments, it is natural to revisit algo-
rithmics for parallel systems and ask what new algorithmic
or complexity ideas Theoretical Computer Science can con-
tribute to this line of research (and engineering) efforts.
Two theoretical questions emerge: 1) What models cap-

ture well the capabilities of the existing systems? 2) What
new algorithmic ideas can we develop for these models? Ad-
dressing Question 1, researchers [17, 27, 20, 9] have proposed
a model which balances simplicity and relevance to practice.
We describe this model in Section 1.1. As for Question 2,
while there already exist a few algorithms adapted or de-
signed for this model (see Section 1.3), we feel that many
more powerful algorithmic ideas are still waiting to be de-
veloped.
It is natural to ask first: do we really need new algo-

rithmics here? A lot of fundamental research on parallel
algorithms was conducted in the 1980s and 1990s, most no-
tably in the PRAM model. One may hope to reuse that
line of research in the new models. Indeed, the works of [27,
20] have shown that one can simulate PRAM algorithms in
MapReduce with minimal slow-down. Is there anything new
about the modern parallel systems?
The answer is that the parameters of the new models are

such that we can hope for faster algorithms than those pos-
sible in the PRAM model. The models allow for interleaving
parallel and sequential computation: in a single step, a ma-
chine can perform arbitrary polynomial time computation
on its local input. The time cost of the algorithm is then
measured in the number of rounds of communication be-
tween machines. This makes it possible to achieve constant
parallel time for interesting problems, while in the PRAM
model functions that depend on the entire input generally re-
quire logarithmic or larger parallel time. For example, even
computing the XOR of n variables requires near-logarithmic

2014 ACM Symposium on the Theory of Computing

577

2014 ACM Symposium on Theory of Computing

574

2014 ACM Symposium on Theory of Computing

574

parallel-time on the most powerful CRCW PRAMs [8]. In
contrast, in the new models, which are similar to a nα-fan-in
circuit, one can trivially solve XOR in O(1/α) parallel time.
Indeed, the MapReduce models rather fall under the blan-
ket of the generic Bulk Synchronous Parallel (BSP) model
[37], though this model has a number of parameters, and as
such has not been thoroughly explored. In particular, few
solutions to even very fundamental problems are known in
the BSP models (see, e.g., [19] for a sorting algorithm). The
new models instead focus on a specific range of parameters
and tradeoffs, making analysis more tractable.
The previous work on MapReduce models identifies a cap-

tivating and challenging problem: connectivity in a sparse
graph. While this problem has a classic logarithmic time
PRAM algorithm [34], we do not know whether we can solve
it faster in the new models [27]. For this particular problem,
though, recent results show logarithmic lower bounds for re-
stricted algorithms [9], suggesting that the negative answer
may be more plausible.

Synopsis of contributions.
In this work, we focus on basic graph problems in the geo-

metric setting, and show we can achieve 1+ε approximation
in a constant number of rounds. In fact, we develop a com-
mon algorithmic framework applicable to graph questions
such as Minimum Spanning Tree and Earth-Mover Distance.
Thus, while it may be hard to speed up standard graph algo-
rithms (without geometric context) in MapReduce-like mod-
els [9], our results suggest that speedups can be obtained if
we manage to represent the graph in a geometric fashion
(e.g., in a similarity space).
Our framework turns out to be quite versatile and has im-

plications beyond parallel computing. For example it yields
a new algorithm for computing EMD (cost) in the plane

in near-linear time, n1+oε(1). We note that while recently
[33] have developed a near-linear time algorithm for (1+ ε)-
approximating EMD, our algorithm is different, and, for ex-
ample, also solves the transportation (cost) problem, raised
as an open question in [33]. In particular, our algorithm uses
little of the combinatorial structure of EMD, and essentially
relies only on an off-the-shelf LP solver. In contrast, [33] in-
trinsically exploit the combinatorial structure, together with
carefully designed data structures to obtain aOε(n log

O(1) n)
time algorithm. Their approach, however, seems hard to
parallelize. Another consequence is a (1 + ε)-approximation
algorithm in the streaming-with-sortingmodel, with nδ space
and 1/δO(1) passes.

1.1 The Model
We adopt the most restrictive MapReduce-like model among
[27, 20, 9]. Following [9], we call the model Massively Paral-
lel Communication or MPC (although we explicitly consider
the local sequential running times as well).
Suppose we havem machines (processors) each with space

s, where n is the size of the input and m · s = O(n). Thus,
the total space in the system is only a constant factor more
than the input size, allowing for minimal replication.
The computation proceeds in rounds. In each round,

a machine performs local computation on its data (of size
s), and then sends messages to other machines for the next
round. Crucially, the total amount of communication sent
or received by a machine is bounded by s, its space. For
example, a machine can send one message of size s, or s

messages of size 1. It cannot, however, broadcast a size-s
message to every machine. In the next round, each machine
treats the received messages as the input for the round.
The main complexity measure is the number of rounds

R required to solve a problem, which we consider to be
the “parallel time” of the algorithm. Some related models,
such as BSP, also consider the sequential running time of
a machine in a round. We de-emphasize this aspect, as we
consider the information-theoretic question of understand-
ing the round complexity to be the first-order business here.
In particular, the restriction on space alone (i.e., with un-
bounded computation per machine) already appears to make
certain problems require a super-constant number of rounds,
including the connectivity in sparse graphs. Nevertheless, it
is natural to minimize the local running time, and indeed
our (local) algorithms run in time polynomial in s, leading

to O(nsO(1)) overall work.
What are good values of s and R? As in [27, 20], we

assume that space s is polynomial in n, i.e., s = nα for some
α > 0. We consider this a justified choice since even under
the natural assumption that s ≥ m (i.e., each machine has
an index of all other machines), we immediately obtain that
s ≥ √n.1
Our goal is to obtain R = poly(logs n) = O(1) rounds.

Note that we do not hope to do better than O(logs n) rounds
as this is required even for computing the XOR of n bits.
Finally, note that the total communication is, a fortiori,

O(n) per round and O(nR) = O(n) overall.

Streaming models. The above MPC model essentially
resides in between two streaming models.
First, it is at least as strong as the “linear streaming”

model, where one stores a (small) linear sketch of the input:
if one has a linear sketch algorithm using space s and R
passes, this immediately implies a parallel algorithm with
local space s2 (andm = O(n/s2) machines) and O(R logsm)
rounds.
Second, the above model can be simulated in the model

of streaming with a sorting primitive [4]. The latter model
is similar to the standard multi-pass streaming model, but
allows for both annotating the stream with keys as we go
through it and sorting the entire stream according to these
keys. In particular, sorting is considered in this model to
be just another pass. Then if we have a parallel algorithm
with s space and R rounds, we also obtain a streaming-with-
sorting algorithm with O(s) space and O(R) passes.

1.2 Our Results
In this work, we focus on graph problems for geometric

graphs. We assume to have n points immersed in a low-
dimensional space, such as R

2 or a bounded doubling di-
mensional metric. Then we consider the complete graph on
these points, where the weight of each edge is the distance
between its endpoints.2

We give parallel algorithms for the following problems:

• Minimum Spanning Tree (MST): compute the min-
imum spanning tree on the nodes. Note that MST
is related to the hierarchical agglomerative clustering

1Furthermore, it is hard to imagine a data set where 3
√
n is

larger than the memory of a commodity machine.
2Since our algorithms work similarly for norms such as
�1, �2, �∞, we are not specific about the norm.

578575575

with single linkage, a classic (and practical) clustering
algorithm [40, 28].

We show how to compute a (1 + ε)-approximate MST

over R
d in logO(1)

s n rounds, as long as (1/ε)O(d) < s.
Note that the number of rounds does not depend on ε
or d. We extend the result to the case of a general point
set with doubling dimension d. All our algorithms run
in time Õ(s) · (1/ε)O(d) per machine per round.

We note that our algorithm outputs a complete tree
(not just its cost as [18]). The tree consists of n − 1
edges, which means that the output is also stored in a
distributed manner. A sketch of the algorithm appears
in Section 3.

• Earth-Mover Distance3 (EMD): given an equipartition
of the points into red and blue points, compute the
min-cost red-blue matching. A generalization is the
transportation distance, in which red and blue points
have positive weights of the same total sum, and the
goal is to find a min-cost matching between red and
blue masses. EMD and its variants are a common met-
ric in image vision [31, 21].

We show how to approximate the EMD and trans-
portation cost up to a factor of 1+ε over R2 in (log sn)

O(1)

rounds, as long as (log n)(ε
−1 logs n)O(1)

< s. The run-
ning time per machine per round is polynomial in s.

Note that, setting s = 2log
1−c n for small enough c > 0,

we obtain a sequential algorithm with overall running
time of n1+o(1) for any fixed ε > 0. Our algorithm can
also be seen as an algorithm in the streaming-with-
sorting model, achieving nδ space and 1/δO(1) rounds
by setting s = nδ. Our algorithm does not output the
actual matching (as [33] do).

All our algorithms fit into a general framework, termed
Solve-And-Sketch, that we propose for such problems. The
framework is naturally “parallelizable”, and—we believe—is
resilient to minor changes in the parallel model definition.
We describe the general framework in Section 2, and place
our algorithms within this framework. The actual imple-
mentation of the framework in the MPC model is deferred
to the full version.
It is natural to ask whether our algorithms are optimal.

Unfortunately, we do not know whether both approximation
and small dimension are required for efficient algorithms.
However, we show that if we could solve exact MST (cost)

in l
O(logn)
∞ , we could also solve sparse connectivity (in gen-

eral graphs), for which we have indications of being im-
possible [9]. We also prove query-complexity lower bounds
for MST in spaces with bounded doubling dimension in the
black-box distance oracle model. In this setting, both ap-
proximation and dimension restriction are necessary. These
results appear in the full version.

1.3 Motivation and Comparison to Previous
Work

The model perspective. [27] have initiated the study of
dense graph problems in the MapReduce model they define,

3Also known as min-cost bichromatic matching, transporta-
tion distance, Wasserstein distance, and Kantorovich dis-
tance.

showing constant-round algorithms for connected-components,
MST, and other problems. In the dense setting, the param-
eters are such that m � s � n, where n is the number
of vertices and m is the number of edges. In this case, the
solution (the size of which is O(n)) fits on a single machine.
In this regime, the main technique is filtering (see also

[30]), where one iteratively sparsifies the input until the en-
tire problem fits on one machine, at which moment the prob-
lem is solved by a regular sequential algorithm. For example,
for connected-components, one can just throw out edges lo-
cally, preserving the global connectivity, until the graph has
size at most s.
Somewhat departing from this is the work of [15], who give

algorithms for k-median and k-center, using s = O(k2nδ).
Instead of filtering, they employ (careful) sampling to re-
duce the size of the input until it fits in one machine and
can be solved sequentially. Note that, while the entire “so-
lution” is of size n � s, it can be represented by k � s
centers. [29] further generalize both the filtering and sam-
pling approaches for certain greedy problems. In their case,
the final solution of size k � s is again computed on a single
machine at the end.
Also highly relevant are the now-classic results on core-

sets [3, 16], which are a generic representation of (a subset
of) input with the additional property of being mergeable.
Corsets are often implementable in the MapReduce model
(in fact, [15] can be seen as such an implementation). How-
ever, coresets have been mostly used for geometric problems
(not graph problems), which often have a small solution rep-
resentation.
We contrast the “dense” regime with the “sparse” regime,

where s is much smaller than the size of the solution. Most
notably, for the problem of computing the connected com-
ponents in a sparse graph, we have no better algorithm than
those following from the standard PRAM literature, despite
a lot of attention from researchers. In fact, [9] suggest it
may be hard to obtain a constant number of rounds for this
problem.
Our algorithms rather fall in the “sparse” regime, as the

solution (representation) is larger than the local space s. As
such, it appears hard to apply filtering/sampling technique
that drops part of the input from consideration. Indeed, our
approach can rather be seen as a generalization of the notion
of coreset.
We also mention other related works in MapReduce-like

models, e.g., [12, 10, 7], which, however, require at least
logarithmic parallel time.

The problems perspective. While we are not aware of a
previous study of geometric graph problems in the MapRe-
duce models, these problems have been studied extensively
in other standard models, including 1) near-linear time al-
gorithms, and 2) streaming algorithms.
Linear-time (approximate) algorithms for MST are now

classic results [35, 11]. For EMD, it is only very recently
that researchers found a near-linear time approximation al-
gorithm [33] (following a line of work on the problem [36, 2,
38, 1, 25, 32]). Our framework naturally leads to near-linear
time algorithms.
In the streaming model, a generic approach to approxi-

mating a large class of geometric graph problems has been
introduced in [24]. The work of [24] has generally obtained
logarithmic approximation for many problems and subse-
quently there has been a lot of research on improving these

579576576

algorithms. Most relevantly, [18] have shown how to (1+ ε)-
approximate the MST cost. We stress that their algorithm
outputs the cost only and does not lead to an algorithm for
computing the actual tree as we accomplish here.
Obtaining a (1 + ε)-approximation streaming algorithm

for EMD is a well-known open question. The best known
streaming algorithm obtains a O(1/δ) approximation in nδ

space for any δ > 0 [5].
Our algorithmic framework immediately leads to an algo-

rithm for computing 1 + ε approximation in nδ space and
1/δO(1) passes in the streaming-with-sorting model. In gen-
eral, our EMD result implies one of the following: either 1)
it illustrates the new parallel models as a concrete mid-point
in the quest for an efficient streaming algorithm for EMD,
or 2) it separates the new parallel models from the linear
streaming model, showing them as practical models for sub-
linear space computation which are strictly more powerful
than streaming. We do not know which of these cases is
true, but either would be an interesting development in the
area of sublinear algorithms.

1.4 Techniques
We now describe the main technical ideas behind our al-

gorithms. Our MST algorithm is simple, but requires some
careful analysis, while the EMD algorithm is technically the
most involved and we describe the intuition behind it in the
full version.

MST. To illustrate the main ideas involved in the algo-
rithm it suffices to consider the problem over the 2D grid
[0, n]2. The framework consists of three conceptual parts:
partition, local solution, and sketch. The partition is a stan-
dard quadtree decomposition, where we impose a hierarchi-
cal grid, randomly shifted in the space. In particular, each
cell of the grid is recursively partitioned into

√
s×√s cells,

until cell size is
√
s ×√s. The partition is naturally repre-

sented by a tree of arity s.
The other two parts are the crux of the algorithm. Con-

sider first the following recursive näıve algorithm. Starting
from leaves and going bottom-up, we compute the minimum
spanning tree among the input points (local solution) at ev-
ery cell in the quadtree, and then send a sketch of this tree
to the upper-level cell. The problem is solved recursively
in the upper-level cell by connecting partial trees obtained
from the lower level.
However, such an algorithm does not yield a (1 + ε)-

approximation. While constructing minimum spanning tree
in a cell, the limited local view may force us to make an
irrevocably bad decision. In particular, we may connect the
nodes in the current cell, which in the optimal solution are
connected by a path of nodes outside the cell (see the exam-
ple in Figure 1.

2

1

Figure 1: A bad ex-
ample for the näıve
MST algorithm.

Figure 2: Local view
is insufficient for
EMD.

The challenge is to produce a local solution, without com-

mitting to decisions that may hurt in the future. To accom-
plish this, our local solution at a cell is to find the minimum
spanning forest among the input points, using only short
edges, of length at most ε times the diameter Δ of the cell.
Note that it is possible that the local set of points remains
disconnected.
Our sketch for each cell consists of an ε2Δ-net4 of points

in the cell together with the information about connectivity
between them in the current partial solution. Note that the
size of the sketch is bounded by O(ε−4). This sketch is sent
to the parent cell. Then the local solution at the parent node
consists of constructing a minimum spanning forest for the
connected components obtained from its children.
We also generalize our algorithm to the case of a point set

with bounded doubling dimension. Here, the new challenge
is to construct a good hierarchical partition first.

EMD. Our EMD algorithm adopts the general principle
from MST, though the “solution” and “sketch” concepts be-
come more intricate. Consider the case of EMD over [n]2.
As in MST, we partition the space using a hierarchical grid,
represented by a tree with arity s.
In contrast to the MST algorithm, there are no local“safe”

decisions one can make whatsoever. Consider Figure 2.
The two rows of points are identical according to the lo-
cal view. However, in one case we should match all points
internally, and in the other, we should leave the end points
to be matched outside. As far as the local view is concerned,
either partial solution may be the right one. If we locally
commit to the wrong one, we are not able to achieve a 1+ ε
approximation no matter what we do next. Therefore, we
need to sketch the entire set of local solutions.
This is exactly what we accomplish: we sketch the set of

all possible local solutions. While reminiscent of the dy-
namic programming philosophy, our case is burdened by
the requirement that the representation use sublinear (local)
space. Our algorithm manages to sketch this set of relevant
local solutions approximately. Suppose we define a function
F of d coordinates, one for “each position” in the local cell.
In particular, F takes as argument a vector x ∈ Z

d that
specifies, for each i ∈ [d], how many points of each color
are left unmatched at position i. Then we can define F (x)
to be the cost of the optimal matching of the rest of the
points (with points specified by x excluded from the local
matching).
Ideally, we would like to sketch the function F : Zd → R+.

Unfortunately, even for a monotone, convex, and Lipschitz
function F with d = 2, a sketch is generally not possible. (In
our case, F is not even monotone.) What we show instead is
that we can sketch the function F ′(x) = F (x)+‖x‖1 ·A, for
some convenient factor A. The additional term of ‖x‖1 · A
is tolerable as it captures part of the matching cost at the
higher level. As a result, our sketch of F ′ consists of F ′(x)
values at (ε−1 log n)O(d) well-chosen values of x.
These ideas eventually lead to an information-theoretic al-

gorithm for EMD, namely with the promised guarantees on
space, communication, and rounds. It remains to make the
running time of the local step polynomial in s. To solve
this problem, for each j we find a convex function F ′′j which
is consistent with the sketch of F ′j . Using the convexity of
F ′j and the guarantees of the sketch, we can show that F ′′j

4An r-net of a point set is the maximal subset with pairwise
distances at least r.

580577577

approximates F ′j pointwise. We then obtain a convex opti-
mization problem (in our case we in fact reduce it to a linear
program), which can be solved in time polynomial in s.

2. PRELIMINARIES: SOLVE-AND-SKETCH
FRAMEWORK

We now introduce the framework for our algorithms, termed
Solve-And-Sketch. Its main purpose is to identify and decou-
ple the crux of the algorithm for the specific problem from
the implementation of the algorithm in the parallel model
such as MPC.
The framework requires a “nice” hierarchical partition of

the space. We view the hierarchical partition as a tree,
where the arity is upper bounded by

√
s, and the depth

is O(logs n). The actual computation is broken down into
small “local computation chunks,” arranged according to the
hierarchical partition. The computation proceeds bottom-
up, where at each node, the input (from below) is processed
and the results are compressed into a small sketch that is
sent up to the parent. Each level of the tree is processed in
parallel, with each node assigned to a machine.
In particular, the local computation at a node, termed

“unit step,” consists of two steps:

Solve: Given the local inputs, we compute the set of partial
or potential solutions. For leaves, the local information
consists of the points in that part, and for internal
nodes, it is the information obtained from the children.

Sketch: Sketch the partial solution(s), using total space at
most pu ≤ √s, and send this up the tree to the parent
as a representation of solution(s) in this part.

The main challenges are how to: 1) compute the partition,
2) define the right concept of a “local solution” in a part,
and 3) sketch this concept as a sufficient representation of
all potential solutions in this part. Often the näıve choice of
the a local solution cannot be used, because it either ignores
global information in a way that can damage the optimality
of the algorithm, or it cannot be represented in sublinear
space.
We now define more formally the notions of partition and

of a unit step.

Hierarchical Partition. We use a hierarchical partition
for inputs in (Rd, �2) that is an analogue of a randomly-
shifted quad-tree but with a higher branching factor than
the usual 2d. We denote the branching factor by c. We de-
scribe this partitioning scheme next (see the full version for
additional details). The partition we use to compute MST
in a low doubling dimension metric space is more involved:
see the full version for the construction.
We assume that the input points have integer coordi-

nates in the range [0,Δ], where Δ = nO(1). We show
how to remove this bounded aspect ratio assumption in
the full version for the problems we consider. We con-
struct a randomized hierarchical partition P (i.e., a distri-
bution over hierarchical partitions). A fixed partition sam-
pled from P is denoted P = (P0, . . . , PL), where P� is a
subdivision of P�−1. Let v ∈ R

d be a vector chosen uni-
formly at random from (−Δ, 0]d; P is entirely determined
by the choice of v. The top level PL has a single part
containing the whole input, and is identified with the cube
{x : ∀i vi ≤ xi ≤ vi + 2Δ}. Then we construct P�−1 from

P� by subdividing each cube associated with a part in P�

into c equal sized cubes (via a grid with side-length c1/d),
thus creating a part associated with each smaller cube. In
the final level P0, each part is a singleton, i.e., all associated
cubes contain at most a single point from the input. Since
we assumed all points have integer coordinates in [0,Δ], it is
enough to take L = d logc Δ = O(d logc n). We refer to the
parts of each partition P� as cells. For a level-� cell C ∈ P�,
we define the child cells of C to be those cells C′ ∈ P�−1

that subdivide C, i.e., C′ ⊆ C. For our implementation, we
also need to label each child cell of C with an integer in [c].

Unit Step. The other important component of the sketch
and solve framework is the unit step, which is an algorithm
Au that is applied to each cell C ∈ P� for � = 1, . . . , L.
At level 1, Au takes as input the points in C, and at level
� > 1, Au takes as input the union of outputs of the unit
steps applied to the children of C. The output of Au on
the top-most cell PL is the output of the problem (perhaps
after some post-processing). We define functions pu, tu, su
as follows: on input of size nu, Au produces an output of
size at most pu(nu), runs in time at most tu(nu), and uses
total space su(nu). We require that, on empty input, Au

produces empty output. We call the algorithm that applies
Au to each cell of the partition in the above fashion the
Solve-And-Sketch algorithm.
We prove that once we have a unit step algorithm for a

problem, we also obtain a complete parallel algorithm for the
said problem. Hence designing the unit step for a problem is
the crux for obtaining a parallel algorithm and is decoupled
from the actual implementation specifics in the considered
parallel model.

Theorem 2.1 (Solve-And-Sketch). Fix space param-

eter s = (log n)Ω(d) of the MPC model. Suppose there is
a unit step algorithm using local time tu(nu), space su(nu),
and output size pu(nu) on input of size nu. Assume the
functions tu, su, pu are non-decreasing, and also satisfy:

su(pu(s)) ≤ s1/3 and pu(s) ≤ s1/3.

Then we can set c = sΘ(1) and L = O(logs n) in the par-
titioning from above, and we can implement the resulting
Solve-And-Sketch algorithm in the MPC model in (logs n)

O(1)

rounds. Local runtime is s · tu(s) · (log n)O(1) (per machine
per round).

We defer the proof of the theorem, along with other details
of implementation in the MPC model, to the full version. In
the remainder of this extended abstract, we are concerned
with designing unit step algorithms with the requisite pa-
rameters for the two problems we consider. By Theorem
2.1, this suffices for an efficient MPC algorithm. In the full
version, we also show that, using a different parametrization
for the hierarchical partition, out unit step algorithms also
imply near-linear time sequential algorithms.

3. MINIMUM SPANNING TREE
In this section we prove the existence of an efficient MPC

algorithm that computes a spanning tree of a given point
set in Euclidean space of approximately minimal cost.

Theorem 3.1. Let ε > 0, and s ≥ (ε−1 logs n)
O(1). Then

there exists an MPC algorithm that, on an input set S in R
d

(where |S| = n), runs in (logs n)
O(1) rounds and outputs a

581578578

spanning tree of cost (under the Euclidean distance metric
�d2 for d = O(1)) at most 1+ε factor larger than the optimal.
Moreover, the running time per machine is near linear in the
input size nu, namely O(nuε

−d logO(1) nu).

We prove the theorem above by exhibiting a unit step al-
gorithm within the Solve-And-Sketch framework from Sec-
tion 2. Our unit step algorithm works with partitions more
general than the quadtree-based partition described in Sec-
tion 2. This allows us to apply the unit step to point sets in
low doubling dimension as well, once we have constructed
an appropriate hierarchical partition. See the full version
for more details on the doubling dimension case. For the
remainder of this section, we focus on the low-dimensional
Euclidean case for simplicity.

3.1 Hierarchical Partitions
In this section we define some additional notation related

to hierarchical partitions. We also state the properties of
the hierarchical partitions of Euclidean space defined in Sec-
tion 2 which are necessary for our analysis. In the full version
we abstract the concept of partitions with these properties.
We denote the unique cell at level � containing a point x

as C�(x), i.e., C�(x) is defined by x ∈ C�(x) and C�(x) ∈ P�.
For �′ ≤ � and C ∈ P�′ , we define C�(C) analogously as the
unique cell in the level � containing C.
We use the notation ρ(x, y) for the Euclidean distance

between x and y, and Δ(S) = maxx,y∈S ρ(x, y) for the di-
ameter of a set S. The diameter at level � of a partition
P = (P0, . . . , PL) is denoted Δ(P�) = maxC∈P� Δ(C). Let

us define Δ� = c(�−L)/d2
√
dΔ, where c is the branching fac-

tor of the partition. The two properties of the randomized
partition P defined in Section 2 that are essential to our
analysis are the following:

1. (Bounded diameter) For every deterministic partition
P = (P0, . . . , PL) in the support of P, and for all � ∈
{0, . . . , L}, Δ(P�) ≤ Δ�.

2. (Probability of cutting an edge) For every x, y ∈ [0,Δ],
and for all � ∈ {0, . . . , L},

Pr[C�(x) = C�(y)] ≤ O(d)
ρ(x, y)

Δ�
,

where the probability is taken over the choice of a de-
terministic hierarchical partition from P.

For a proof of the above properties, see the full version,
and also [6].

3.2 The Unit Step Algorithm
Recall that a Solve-and-Sketch (SAS) samples a hierar-

chical partition P = (P0, . . . , PL) of the input, and proceeds
through L levels. In level �, a unit step algorithm is executed
in each cell C of the partition P�, with input the union of
the outputs of the unit steps applied to the children of C.
Our MST unit step also outputs a subset of the edges of
a spanning tree in addition to the input for the next level.
In particular, the unit step computes a minimum spanning
forest of the (possibly disconnected) subgraph consisting of
edges between points in the cell of length at most an εΔ�. By
not including longer edges we ensure that ignoring the edges
that cross cell boundaries does not cost us a constant fac-
tor in the quality of the approximation (see Figure 1). The

edges of the computed minimum spanning forest are output
as a part of the constructed spanning tree. For the next level
we output an ε2Δ�-covering of points in the cell, annotated
by the connected components of the minimum spanning for-
est. In a space of constant dimension we can construct such
a covering of size ε−O(1). The reason why the distance in-
formation given by the covering is accurate enough for our
approximation is that all edges between different connected
components in the spanning forest constructed so far are
either long or have been crossing in the previous level.
We describe the unit step as Algorithm 1. Then Theo-

rem 3.1 follows from Theorem 2.1 and the guarantees on
space and time complexity, as well as the approximation
guarantees of Algorithm 1.

Algorithm 1: Unit Step at Level �

input : Cell C ∈ P�; a collection V (C) of points in C,
and a partition Q = {Q1, . . . Qk} of V (C) into
previously computed connected components.

1 θ := 0
2 while k > 1 and θ ≤ εΔ� do
3 τ := min i,j

i �=j
minu∈Qi,v∈Qj ρ(u, v)

4 Find u ∈ Qi and v ∈ Qj for some i and j such that
i = j and ρ(u, v) ≤ (1 + ε)τ .

5 θ := ρ(u, v)
6 if θ ≤ εΔ� then
7 Output tree edge (u, v).
8 Merge Qi and Qj and update Q and k.

output: V ′ ⊆ V , an ε2Δ�-covering for C, the partition
Q(V ′) induced by Q on V ′.

Notice that Algorithm 1 implements a variant of Kruskal’s
algorithm, with the caveats that we ignore edges longer than
εΔ� as well as edges crossing the boundary of C, and that
we also join only the approximately closest pair of connected
components, rather than the closest pair. This last choice
enables the application of efficient algorithms for approx-
imate nearest neighbor search [23, 22], which are used to
identify which connected components to connect. Conse-
quently, we achieve near-linear total running time.
Let T ∗ be some optimum minimum spanning tree. For a

tree T , let ρ(T) denote the cost of the tree
∑

(u,v)∈T ρ(u, v).
The following theorem is our main approximation result for
the SAS algorithm with unit step Algorithm 1.

Theorem 3.2. For ε ≤ 1
4
and c ≥ 2d, the spanning tree

T ◦ output by the Solve-and-Sketch algorithm with partition
P sampled from P and unit step Algorithm 1 satisfies:

E
P∼P

[ρ(T ◦)] ≤ (1 + εO(Ld))ρ(T ∗).

It is natural to attempt to prove Theorem 3.2 by relating
the SAS algorithm with unit step Algorithm 1 to a known
MST algorithm, e.g., Kruskal’s algorithm (which our algo-
rithm most closely resembles). There are several difficul-
ties, arising from approximations that we use in order to
achieve efficiency in terms of communication, running time,
and space. For example, our algorithm only keeps progres-
sively coarser coverings of the input between phases, and
thus does not have exact information about distances be-
tween connected components. Nevertheless, it is known that

582579579

an approximate implementation of Kruskal’s algorithm still
outputs an approximate MST [23, Section 3.3.1]. However,
our setting presents a further difficulty: because we work in
a parallel environment, Algorithm 1 completely ignores any
edges crossing the boundary of the cell it is currently ap-
plied to. Such edges could have small length, which makes
it generally impossible to show that our algorithm imple-
ments Kruskal’s algorithm even approximately for the com-
plete graph with edge weights given by the Euclidean met-
ric. Instead, we are able to relate our algorithm to a run
of Kruskal’s algorithm on the complete graph with modified
edge weights wP : S × S → R+. These weights are a func-
tion of the hierarchical partition P ; they are always an upper
bound on the true distance ρ, and give larger weight to edges
that cross the boundaries of P� for larger � . We are able
to show (Lemma 3.13) that the length (under ρ) of the i-th
edge output by (a sequential simulation) of our algorithm
is at most a factor 1 + ε larger than the weight (under wP)
of the i-the edge output by Kruskal’s algorithm, when run
on the complete graph with edge weights wP . The proof is
then completed by arguing that for each u, v ∈ S, wP (u, v)
approximates ρ(u, v) in expectation when P is sampled from
a distance preserving partition (Lemma 3.4).
We define the following types of edges based on the po-

sition of their endpoints with respect to the space partition
used by the algorithm.

Definition 3.3 (Crossing and non-crossing edges).

An edge (u, v) is crossing in level � if C�(u) = C�(v) and
non-crossing otherwise.

Also for each edge we define the crossing level, which is
useful in the analysis. For an edge (u, v) let its crossing
level �c(u, v) be the largest integer such that C�c(u,v)(u) =
C�c(u,v)(v). Let P be a randomized (a, b)-partition ofM(S, ρ)
with L levels. For every deterministic partition P in the
support of P, we define the modified weights wP (u, v) =
ρ(u, v) + εΔ�c(u,v).
We show that the modified weights wP (u, v) approximate

the original distances ρ(u, v) in expectation. This lemma
and its proof are similar to arguments used in recent work
on approximating the Earth-Mover Distance in near-linear
time [33], and date back to Arora’s work on approxima-
tion algorithms for the Euclidean Traveling Salesman Prob-
lem [6]. The proof appears in the full version.

Lemma 3.4. For all u, v ∈ S, ρ(u, v) ≤ EP∼P [wP (u, v)] ≤
(1 +O(εLd))ρ(u, v).

Recall that in Algorithm 1 for a cell C ∈ P� the set V (C) is
a subset of points of C considered at level �. Also recall that
C�(u) is the cell containing u at level �. We use the following
notation to denote the closest neighbor of u considered at
level �.

Definition 3.5. For u ∈ S let N�(u) be the nearest neigh-
bor to u in V (C�(u)) ∩ C�−1(u), i.e.,

N�(u) = arg min
v∈V (C�(u))∩C�−1(u)

ρ(u, v).

For two points u and v, we use the following distance
measure ρ�(u, v) in the analysis.

Definition 3.6. For an edge (u, v) we define ρ�(u, v) =
ρ(N�(u), N�(v)) to be the distance between the nearest neigh-
bors of u and v at level �.

The next lemma (with a proof omitted from this extended
abstract) shows that ρ� is an approximation to ρ.

Lemma 3.7. For every C ∈ P� and u, v ∈ C, it holds that
|ρ�(u, v)− ρ(u, v)| ≤ 2ε2Δ�−1.

To complete our analysis we need to further characterize
edges according to their status during the execution of the
algorithm.

Definition 3.8 (Short and long edges). We call an
edge (u, v) short in level � if ρ�(u, v) ≤ ε

1+ε
Δ�, and long oth-

erwise.

Definition 3.9 (Processing level and sequence).

For an edge e in T ◦, the processing level �p(e) is the inte-
ger � such that e is output by the unit step applied to some
C ∈ P�. Consider a sequential simulation of the SAS algo-
rithm with unit step Algorithm 1, in which at each level �,
the unit step is applied to each cell C ∈ P� sequentially in
an arbitrary order. The processing sequence (e1, . . . , en−1)
consists of the edges of T ◦ in the order in which they are
output by the above sequential simulation.

Definition 3.10 (Intercluster edges). The forest at
step i, denoted T ◦i , is defined as the forest {e1, . . . , ei}. An
edge e = (u, v) is intercluster at step i if u and v lie in dif-
ferent connected components of T ◦i−1. We denote the set of
all intercluster edges at step i as Ii.

Lemma 3.11. Let ε ≤ 1
4
and a ≤ 1

2
. For every vertex u,

level � and step i > 1 such that �p(ei) ≥ � the vertices u and
N�(u) are in the same connected component of T ◦i−1.

Proof. Note that it suffices to prove the claim for the
smallest i such that �p(ei) ≥ �. Fix such i. Assume for
contradiction that for some � the vertices u and N�(u) are
in different connected components of T ◦i−1. Fix the small-
est such �. If � = 1, then N�(u) = u, so we may assume
� ≥ 2. Let C = C�(u) and C′ = C�−1(u). At the end
of the execution of Algorithm 1 in cell C′, the partition Q
of V (C′) into connected components is a subdivision of the
connected components of T ◦i−1 restricted to V (C′). By the
choice of �, u and N�−1(u) are in the same connected com-
ponent of T ◦i−1, and, since we assumed that u and N�(u)
are in different connected components of T ◦i−1, it must be
the case that N�−1(u) and N�(u) are in different connected
components in Q, i.e., N�−1(u) ∈ Qk and N�(u) ∈ Qk′ for
k = k′. Since V (C)∩C′ is a ε2Δ�−1-covering of C

′ and V (C′)
is a ε2Δ�−2-covering of C′, we have ρ(u,N�(u)) ≤ ε2Δ�−1

and ρ(u,N�−1(u)) ≤ ε2Δ�−2. Then, by the triangle inequal-
ity, τ ≤ ρ(N�−1(u), N�(u)) ≤ (1 + a)ε2Δ�−1, and the al-
gorithm finds u′ ∈ Qk, v

′ ∈ Qk′ such that θ = ρ(u′, v′) ≤
(1 + ε)τ ≤ ε2(1 + ε)(1 + a)Δ�−1. Since for ε ≤ 1

4
and a ≤ 1

2
,

ε(1+ε)(1+a) < 1, this contradicts the termination condition
for the main loop of Algorithm 1.

Lemma 3.13 is the key part of the proof of Theorem 3.2.
It shows that the cost of the i-th edge output by our algo-
rithm is bounded in terms of the cost of i-th edge output by
Kruskal’s algorithm. In this extended abstract we omit the
full proof and give a sketch instead.

Definition 3.12 (Kruskal’s edge). Let ewPi be the i-
th edge output by Kruskal’s algorithm when run on the com-
plete graph on S with edge weights wP : S × S → R.

583580580

Lemma 3.13. If ε ≤ 1
4
and a ≤ 1

2
, then for each i it holds

that ρ(ei) ≤ (1 +O(ε))wP (e
wP
i).

Proof Sketch. We denote the shortest intercluster edge
at step i as e+i = argmine∈Ii wP (e).

First we show that the weight of ewPi is bounded by the
weight of e+i in Proposition 3.14. This argument is due to
Indyk [23, Section 3.3.1, Lemma 11].

Proposition 3.14. For each i it holds that wP (e
+
i) ≤

wP (e
wP
i).

Proof. Note that T ◦i−1 has n − i + 1 connected com-
ponents. Because {ewP1 , . . . , ewPi } is a forest, there exists
j ≤ i such the endpoints of ewPj lie in different connected

components of T ◦i−1. Thus, by definition of e+ we have
wP (e

+
i) ≤ wP (e

wP
j). Because the edges output by Kruskal’s

algorithm satisfy that wP (e
wP
j) ≤ wP (e

wP
i) for j ≤ i, the

lemma follows.

Using Proposition 3.14 it suffices to show that ρ(ei) ≤
(1 +O(ε))wP (e

+
i) to complete the proof. The proof consid-

ers three cases: (I) �c(e
+
i) ≥ �p(ei), (II) �c(e

+
i) = �p(ei)−1,

and (III) �c(e
+
i) < �p(ei)−1. Case (I) is relatively easy, and

relies on the fact that in this case wP (e
+
i) is large by def-

inition: the proof is omitted from this sketch. Cases (II)
and (III) use the following proposition, proved in the full
version of the paper. It shows that the i-th edge ei out-
put by (the sequential simulation) of the SAS algorithm is
approximately the shortest non-crossing intercluster edge.

Proposition 3.15. Let ε ≤ 1
4
and c ≥ 2d. If e ∈ Ii is

non-crossing at level �p(ei) then ρ(ei) ≤ (1 + ε)ρ�p(ei)(e).

Case (II) follows from Proposition 3.15 and definitions by
a straightforward argument, which we omit. The proof of
case (III) is the most delicate, and we give the proof below.
We first state another proposition, which is proved in the
full version.

Proposition 3.16. Let ε ≤ 1
4
and c ≥ 2d. Every e ∈ Ii

is either crossing or long in level �p(ei)− 1.

In case (III), by Proposition 3.16, since e+i was not cross-
ing in level �p(ei)− 1, then e+i must have been long. Thus,

ρ(e+i) ≥ ρ�p(ei−1)(e
+
i)− ε2Δ�p(ei)−2

>
ε

1 + ε
Δ�p(ei)−1 − ε2Δ�p(ei)−2

=

(
1

1 + ε
− c−1/dε

)
εΔ�p(ei)−1

> (1− (1 + a)ε)εΔ�p(ei)−1,

where the first inequality holds by Lemma 3.7, the second
inequality holds by definition of a long edge at level �p(ei)−
1 (Definition 3.8) and the third equality holds because by

definition Δ�p(ei)−2 = c−1/dΔ�p(ei)−1.
Then we have:

ρ(ei) ≤ (1 + ε)ρ�p(ei)(e
+
i)

≤ (1 + ε)ρ(e+i) + (1 + ε)ε2Δ�p(ei)−1

≤
(
1 +

(
1 +

1 + ε

1− (1 + c−1/d)ε

)
ε

)
ρ(e+i)

≤ (1 +O(ε))wP (e
+
i),

where the first inequality holds by Proposition 3.15, the sec-
ond holds by 3.7, the third uses the calculation above and
the last one is a direct calculation.

Theorem 3.2 follows from Lemma 3.13 and Lemma 3.4
using standard arguments. We omit the proof from this
extended abstract.

3.3 Proof of Theorem 3.1
Theorem 3.1 follows from Theorem 2.1, Theorem 3.2, and

the following lemma (with a proof omitted), which gives
guarantees on the time and space complexity of Algorithm 1.

Lemma 3.17. The unit step Algorithm 1 has space com-
plexity su(nu) = nu logO(1) nu words, and time complexity

tu(nu) = ε−dnu logO(1) nu. Moreover, the output size is
pu = O(ε−d) words.

4. THE TRANSPORTATION PROBLEM
In this section we sketch the parallel algorithms for com-

puting the cost of the Earth-Mover Distance and Trans-
portation problems.
In the Transportation problem we are given two sets of

points A,B in a metric space (M,ρ), and a demand function
ψ : A ∪ B → N such that

∑
u∈A ψ(u) =

∑
v∈B ψ(v). The

Transportation cost between A and B given demands ψ is
the value of the minimum cost flow from A to B such that
the demands are satisfied (i.e., the flow out of each point
u ∈ A is ψ(u) and the flow into each point v ∈ B is ψ(v),
and the costs are given by the metric ρ. We denote the
transportation cost, i.e., the minimum cost of a feasible flow,
by costρ(A,B, ψ). When for all u ∈ A, v ∈ B, ψ(u) =
ψ(v) = 1, the minimal flow forms a matching, and, therefore,
its value is just the minimum cost of a perfect bichromatic
matching. In this case costρ(A,B, ψ) is the Earth-Mover
Distance between A and B, and we denote it simply by
costρ(A,B).
In this paper we are concerned with the Euclidean Trans-

portation cost problem, in which we assume that A and B
are sets of points in the plain R

2, and ρ is the usuall Eu-
clidean distance �22. Therefore, for the rest of the section
we assume that ρ is the Euclidean distance metric, and we
write cost(A,B, ψ) for costρ(A,B, ψ). Our results general-
ize to any norm on R

d for d = O(1), but we focus on the
Euclidean case for simplicity.
The main result of this section is the following theorem.

Theorem 4.1 (Transportation cost problem). Let

ε > 0, space s ≥ (log n)(ε
−1 logs n)Ω(1)

, and max demand be

U = nO(1). Then there exists an MPC algorithm with space
parameter s that, on input sets A,B ⊆ R

2, |A|+|B| = n, and
demand function ψ : A∪B → [0, U] such that

∑
u∈A ψ(u) =∑

b∈B ψ(v), runs in (logs n)
O(1) rounds and outputs a (1+ε)-

approximation to cost(A,B, ψ). Moreover, the local running
time per machine (per round) is polynomial in s.

Our methods also imply a near-linear time sequential al-
gorithm for the Transportation cost problem, answering an
open problem from [33].

Theorem 4.2 (Near-Linear Time). Let ε > 0 and

U = nO(1). There exists an algorithm with running time
n1+oε(1) that, on input sets A,B ⊆ R

2, |A| + |B| = n, and

584581581

demand function ψ : A∪B → [0, U] such that
∑

a∈Aψ ψ(a) =∑
b∈Bψ ψ(b), outputs a (1+ε)-approximation to cost(A,B, ψ).

We develop the proof in four steps. First, we impose a
hierarchical partition that also defines a modified distance
metric ρg that approximates ρ in expectation (our only step
similar to one from [33]). The new metric has a tree struc-
ture that allows us to develop a recursive optimality con-
dition for the Transportation problem that uses only local
information and can be sketched in small space. Second,
we define a generalized cost function F , which captures
all the local solutions of a corresponding part/node in the
tree. Third, we develop an “information theoretic” parallel
algorithm; the algorithm does not run in polynomial time
but obeys the space and communication constraints of our
model. Finally, we modify the information theoretic algo-
rithm to obtain a time-efficient algorithm.

New distance. As with MST, we sample randomized hier-
archical partition P = (P1, . . . , PL) of A ∪ B using a quad-
tree with branching factor c, as described in Section 2. For
each level � of the grid, define Δ� to be the side-length of
cells at that level: Δ� = Δ/(

√
c)L−�. At level �, we also con-

sider a subgrid of squares of side length δΔ� imposed over
P�. We call the centers of the subgrid a net at level �.
We define a new grid distance ρg based on the hierarchical

partition (i.e., ρg(u, v) is a random variable, and is entirely
determined by P). The construction of ρg is similar to the
definition of the weights wP in the analysis of our MST algo-
rithm, and also to the metric defined in [33]. The two main
properties of ρg are that (1) for any u, v that lie in different
cells of P�, ρg(u, v) ≥ δΔ�, and (2) for any input A, B, ψ,
with probability 9/10, cost(A,B, ψ) ≤ costρg (A,B, ψ).
We defer the precise definition of ρg and the proofs of the

above two statements to the full version of the paper.

Cost Function. For a given grid cell C at level �, we de-
fine a multi-argument function F that represents the cost of
solutions in the cell C. The number of arguments of F is
d = 1/δ2 − 1. In particular, there is one argument, xr, cor-
responding to each point r from from the grid N = N� ∩C,
except exactly one (arbitrarily chosen) called r∗.

Let AC = A ∩ C and BC = B ∩ C, and, for each point
r ∈ N ∩ C, let Ar be the set of points in AC for which r is
the nearest neighbor in N , and define Br analogously.
The function F on a vector x ∈ R

d is the value of a so-
lution of a min-cost flow problem. We define a network by
taking the complete bipartite graph on AC and BC , with
costs given by the grid distance ρg. We also connect each
net point r to Ar; finally we connect r∗ to all other net-
points. The interpretation of the arguments of F is that
xr > 0 means xr demand from Ar has to flow to points
outside C through r and xr < 0 means that −xr demand
from Br has to flow in from from points outside C through
r. Having specified all values of xr for r ∈ N ◦, we route
the imbalance through r∗. The cost for flow coming from
the outside is δΔ�/2: by the definition of the grid distance
this is a valid lower bound on the final cost. Modulo these
constraints, and the demands specified by ψ on AC and BC ,
F (x) gives the minimum cost of a flow from AC to BC . The
details of the definition of F appear in the full version of the
paper.
The crucial property of F is that it is sketchable: there

exists a small size data structure which allows us to approx-
imate F (x) for any x. The main ingredient in the construc-

tion of the sketch is the following lemma.

Lemma 4.3. Fix ε > 0 and suppose δ = εO(1). There

exists an ε′ = εO(1) such that for all feasible x, x′ ∈ R
N◦

satisfying ∀i : x′i/xi ∈ [1−ε′, 1+ε′], we have |F (x)−F (x′)| ≤
εF (x).

The proof of Lemma 4.3 (omitted here) relies on the follow-
ing two facts

• (Lower bound) F (x) ≥ ‖x‖1δΔ�/2 (because the cost of
a unit of flow coming from outside is δΔ�/2;

• (Lipschitz continuity) for any coordinate r ∈ N , we
have |F (x+αer)−F (x)| ≤ O(αΔ�), where er is stan-
dard basis vector.

Given Lemma 4.3, the construction of a sketch for F is
simple: we record the value of F at at all x for which each
coordinate is an integral power of ε′. This gives a sketch of

size (log n)1/ε
O(1)

.

The Algorithm. Our algorithm for the transportation cost
problem is based on a recursive formulation. We characterize
F (x) for any cell C with children C1, . . . , Cc as an optimiza-
tion problem whose objective function has two components:
the sum of the cost functions Fi(x

i) for the child cells Ci,
and the cost of routing flow between the relevant netpoints.
Evaluating F (0) for the unique cell C ∈ PL that contains
the entire input gives the transportation cost. This recur-
sive definition, together with the fact that each Fi can be
approximated from a small size sketch, is sufficient for us
to define a unit step algorithm satisfying the required space
and output constraints. However, the näıve unit step al-
gorithm does not run in polynomial time, because it must
iterate through all possible parameter vectors xi for the cost
functions Fi for each child cell Ci. We address this issue by
computing a convex function F̃i that gives at least as good
an approximation to Fi as the sketch of Fi. In particular we
let F̃i be the largest convex function which agrees with the
sketch of each Fi. Because Fi is a convex function itself, and
the sketch is just the list of values of Fi(x) for a small set

of parameter vectors x, F̃i must be sandwiched between the
estimate given by the sketch and the actual Fi. This gives
the approximation guarantee.
The functions F̃i are “piecewise linear” and can easily be

absorbed into a larger linear program (LP) to compute F for
a cell C. In the end, the local running time is polynomial in
s, because the resulting LPs can be solved with an arbitrary
polynomial time LP algorithm.

5. REFERENCES
[1] P. Agarwal and K. Varadarajan. A near-linear

constant factor approximation for Euclidean
matching? SoCG, 2004.

[2] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical
decomposition of shallow levels in 3-dimensional
arrangements and its applications. SICOMP,
29(3):912–953, 2000.

[3] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.
Geometric approximation via coresets. Combinatorial
and Computational Geometry (MSRI publication), 52,
2005.

[4] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl.
On the streaming model augmented with a sorting
primitive. In FOCS, 2004.

585582582

[5] A. Andoni, K. Do Ba, P. Indyk, and D. Woodruff.
Efficient sketches for Earth-Mover Distance, with
applications. In FOCS, 2009.

[6] S. Arora. Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric
problems. JACM, 45(5):753–782, 1998.

[7] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest
subgraph in streaming and MapReduce. VLDB, 2012.

[8] P. Beame and J. H̊astad. Optimal bounds for decision
problems on the CRCW PRAM. JACM,
36(3):643–670, 1989.

[9] P. Beame, P. Koutris, and D. Suciu. Communication
steps for parallel query processing. In PODS, 2013.

[10] G. E. Blelloch, R. Peng, and K. Tangwongsan.
Linear-work greedy parallel approximate set cover and
variants. 2011.

[11] P. B. Callahan and S. R. Kosaraju. Faster algorithms
for some geometric graph problems in higher
dimensions. In SODA, 1993.

[12] F. Chierichetti, R. Kumar, and A. Tomkins.
Max-Cover in Map-Reduce. In WWW, 2010.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[14] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. CACM,
51(1):107–113, 2008.

[15] A. Ene, S. Im, and B. Moseley. Fast clustering using
MapReduce. In KDD, 2011.

[16] D. Feldman and M. Langberg. A unified framework for
approximating and clustering data. In STOC, 2011.

[17] J. Feldman, S. Muthukrishnan, A. Sidiropoulos,
C. Stein, and Z. Svitkina. On distributing symmetric
streaming computations. ACM Transactions on
Algorithms, 6(4), 2010. Previously in SODA’08.

[18] G. Frahling, P. Indyk, and C. Sohler. Sampling in
dynamic data streams and applications. International
Journal of Computational Geometry & Applications,
18(01n02):3–28, 2008. Previously in SoCG’05.

[19] M. T. Goodrich. Communication-efficient parallel
sorting. SICOMP, 29(2):416–432, 1999. Previously in
STOC’96.

[20] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting,
searching, and simulation in the MapReduce
framework. In ISAAC, 2011.

[21] K. Grauman and T. Darrell. The pyramid match
kernel: Discriminative classification with sets of image
features. In ICCV, Beijing, China, October 2005.

[22] S. Har-Peled, P. Indyk, and R. Motwani. Approximate
nearest neighbor: Towards removing the curse of

dimensionality. Theory of Computing, 8(1):321–350,
2012.

[23] P. Indyk. High-dimensional Computational Geometry.
PhD thesis, Stanford University, 2000.

[24] P. Indyk. Algorithms for dynamic geometric problems
over data streams. STOC, 2004.

[25] P. Indyk. A near linear time constant factor
approximation for Euclidean bichromatic matching
(cost). In SODA, 2007.

[26] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. ACM SIGOPS Operating
Systems Review, 41(3):59–72, 2007.

[27] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for MapReduce. In SODA, 2010.

[28] J. Kleinberg and E. Tardos. Algorithm design. Pearson
Education India, 2006.

[29] R. Kumar, B. Moseley, S. Vassilvitskii, and
A. Vattani. Fast greedy algorithms in MapReduce and
streaming. 2013.

[30] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii.
Filtering: a method for solving graph problems in
MapReduce. 2011.

[31] Y. Rubner, C. Tomasi, and L. Guibas. The earth
mover’s distance as a metric for image retrieval.
International Journal of Computer Vision,
40(2):99–121, 2000.

[32] R. Sharathkumar and P. K. Agarwal. Algorithms for
the transportation problem in geometric settings. In
SODA, 2012.

[33] R. Sharathkumar and P. K. Agarwal. A near-linear
time approximation algorithm for geometric bipartite
matching. In STOC, 2012.

[34] Y. Shiloach and U. Vishkin. An O(log n) parallel
connectivity algorithm. J. Algorithms, 3(1):57–67,
1982.

[35] P. M. Vaidya. Minimum spanning trees in
k-dimensional space. SICOMP, 17(3):572–582, 1988.

[36] P. M. Vaidya. Geometry helps in matching. SICOMP,
18(6):1201–1225, 1989.

[37] L. G. Valiant. A bridging model for parallel
computation. CACM, 33(8):103–111, 1990.

[38] K. R. Varadarajan and P. K. Agarwal. Approximation
algorithms for bipartite and non-bipartite matching in
the plane. In SODA, 1999.

[39] T. White. Hadoop: the definitive guide. O’Reilly, 2012.

[40] C. T. Zahn. Graph-theoretical methods for detecting
and describing gestalt clusters. IEEE Computers,
100(1):68–86, 1971.

586583583

