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ABSTRACT
We give new rounding schemes for the standard linear program-
ming relaxation of the correlation clustering problem, achieving
approximation factors almost matching the integrality gaps:

• For complete graphs our approximation is 2.06 − ε, which
almost matches the previously known integrality gap of 2.

• For complete k-partite graphs our approximation is 3. We
also show a matching integrality gap.

• For complete graphs with edge weights satisfying triangle
inequalities and probability constraints, our approximation
is 1.5, and we show an integrality gap of 1.2.

Our results improve a long line of work on approximation al-
gorithms for correlation clustering in complete graphs, previously
culminating in a ratio of 2.5 for the complete case by Ailon,
Charikar and Newman (JACM’08). In the weighted complete
case satisfying triangle inequalities and probability constraints, the
same authors give a 2-approximation; for the bipartite case, Ailon,
Avigdor-Elgrabli, Liberty and van Zuylen give a 4-approximation
(SICOMP’12).

1. INTRODUCTION
We study the correlation clustering problem – given inconsistent

pairwise similarity/dissimilarity information over a set of objects,
our goal is to partition the vertices into an arbitrary number of clus-
ters that match this information as closely as possible. The task of
clustering is made interesting by the fact that the similarity infor-
mation is inherently noisy. For example, we may be asked to cluster
u and v together, and v and w together, but u and w separately. In
this case there is no clustering that matches the data exactly. The
optimal clustering is the one that differs from the given constraints
at the fewest possible number of pairs, and it may use anywhere
between one and n clusters. In some contexts this problem is also
known as cluster editing: given a graph between objects where ev-
ery pair deemed similar is connected by an edge, add or remove the
fewest number of edges so as to convert the graph into a collection
of disjoint cliques.
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Correlation clustering is quite different from other common clus-
tering objectives in that the given data is qualitative (similar versus
dissimilar pairs) rather than quantitative (e.g. objects embedded in
a metric space). As such, it applies to many different problems that
arise in machine learning, biology, data mining and other areas.
From a learning perspective, correlation clustering is essentially an
agnostic learning problem: the goal is to fit a classifier from a cer-
tain concept class (namely all clusterings) as best as possible to
noisy examples (namely the pairwise similarity information). The
correlation clustering objective has been successfully employed for
a number of learning problems, for example: coreference resolu-
tion [12, 13, 23], where the goal is to determine which references
in a news article refer to the same object; cross-lingual link detec-
tion [26], where the goal is to find news articles in different lan-
guages that report on the same event; email clustering by topic or
relevance; and image segmentation [29]. In biology, the problem of
clustering gene expression patterns can be cast into the framework
of correlation clustering [7, 5]. Another application, arising in data
mining, is that of aggregating inconsistent clusterings taken from
different sources [16]. In this setting, the cost of an aggregate clus-
tering is the sum over pairs of objects of the fraction of clusterings
that it differs from. This special case of correlation clustering is
known as the consensus clustering problem.

In many of the above applications, we have access to a binary
classifier that takes in pairs of objects and returns a “similar” or
“dissimilar” label. We can interpret this information in the form of
a complete graph with edges labeled “+” (denoting similarity) and
“−” (denoting dissimilarity). The correlation clustering problem
can then be restated as one of producing a clustering such that most
of the “+” edges are within clusters and most “−” edges cross dif-
ferent clusters. In some cases, it may not be possible to compare
all pairs of objects, leaving “missing” edges so that the underlying
graph is not complete. However, correlation clustering on general
graphs is equivalent to the multicut problem [14], and obtaining any
constant factor approximation is Unique-Games hard [9].1 Still,
it is possible to get approximations for some practical cases with
missing edges; for example, when the underlying graph is a com-
plete k-partite graph. Ailon, Avigdor-Elgrabli, Liberty, and van
Zuylen [2] give several applications of complete bipartite correla-
tion clustering.

Since its introduction a decade ago by Bansal, Blum, and
Chawla [6], correlation clustering has gained a lot of prominence
within the theory and learning communities (see, e.g., the survey
by Wirth [29], and references therein) and has become one of
the textbook examples in the design of approximation algorithms

1The best known algorithm due to Demaine, Emanuel, Fiat, and
Immorlica [14] gives an O(logn) approximation.
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(Williamson and Shmoys [28] consider the correlation clustering
problem with the maximization objective). Bansal et al. gave the
first constant factor approximation algorithm for the problem on
complete graphs. The factor has since then been improved several
times, culminating in a factor of 2.5 for complete graphs due to
Ailon, Charikar, and Newman [3], which relies on a natural LP for-
mulation of the problem. On the other hand, the problem is known
to be APX-hard [14], and the best known integrality gap of the LP
is 2 [8], leaving a 20% margin for improvement.

1.1 Our Results
In this paper, we nearly close the gap between the approximation

ratio and the integrality gap for complete graphs and complete k-
partite graphs: For the correlation clustering problem on complete
graphs, we obtain a (2.06 − ε)-approximation for some fixed ε,
nearly matching an integrality gap of 2 [8]. For the correlation
clustering problem on complete k-partite graphs, we obtain a 3-
approximation and exhibit an integrality gap instance with a gap of
3. The previously best known algorithm for the bipartite variant of
the problem due to Ailon et al. [2] gives a 4-approximation.

THEOREM 1. There is a deterministic polynomial-time algo-
rithm for the Correlation Clustering Problem that gives a (2.06 −
ε)-approximation for complete graphs, where ε is some fixed con-
stant smaller than 0.01, and a 3-approximation for complete k-
partite graphs.

We also study a weighted variant of the problem. In this variant,
each edge has a positive weight λ+

uv and a negative weight λ−uv , the
goal is to minimize the total weight of violated edges (for details
see the full version). We show that Weighted Correlated Cluster-
ing is equivalent to the unweighted Correlated Clustering on com-
plete graphs if λ+

uv + λ−uv = 1 for every (u, v) ∈ E. Gionis,
Mannila and Tsaparas [17] introduce a natural special case of this
problem in which the negative weights satisfy the triangle inequal-
ity (for every u, v, w it holds that λ−uv ≤ λ−uw + λ−wv). For this
problem – Weighted Correlation Clustering with Triangle Inequal-
ities – we give a 1.5-approximation algorithm, improving on the
2-approximation of Ailon et al. [3]. Our proof of the last result is
computer assisted.

The main technical contribution of our paper is an approach to-
wards obtaining a tight rounding scheme given an LP solution. At
a high level our algorithm is similar to that of Ailon et al. [3],
but we perform the actual rounding decisions in a novel way, us-
ing carefully designed functions of the LP solution to get rounding
probabilities for edges in the graph, allowing us to obtain a near-
optimal approximation ratio. We emphasize that although we em-
ploy a lengthy and complicated analysis to prove that our rounding
scheme achieves a (2.06 − ε)-approximation, our algorithm itself
is very simple and runs in time O(n2) given the LP solution. The
linear programming relaxation that we use has been studied very
extensively and heuristic approaches have been developed for solv-
ing it [15].

We demonstrate our technique for correlation clustering in com-
plete graphs, in complete k-partite graphs, and in the special case
of weighted edges satisfying triangle inequality constraints. In each
case, we obtain significant improvements over the previously best
known results, and nearly or exactly match the integrality gap of
the LP. When we are unable to match the integrality gap, we prove
a lower bound on the ratio that may be achieved by any functions
within our rounding scheme. Our results and a comparison with the
previous work are summarized in Table 1.

1.2 Our Methodology
As is the case for many graph partitioning problems, the corre-

lation clustering objective can be captured in the form of a linear
program over variables that encode lengths of edges. A long edge
signifies that its endpoints should be placed in different clusters,
and a short edge signifies that its endpoints should be in the same
cluster. For consistency, edge lengths must satisfy the triangle in-
equality.

A natural approach to rounding this relaxation is to interpret each
edge’s length, xuv , as the probability with which it should be cut.
The challenge is to ensure consistency. For example, consider a
triangle with two positive edges and one negative edge where the
negative edge has LP length 1

2
. If we first cut the negative edge

with probability 1
2

, then in order to return a consistent clustering
we are forced to cut one of the positive edges. In this way, an inde-
pendent decision to cut or not cut one edge may force a decision on
a different edge, resulting in “collateral damage.” Ailon, Charikar,
and Newman [3] give a simple rounding algorithm and a charg-
ing scheme that cleanly bounds the cost of this collateral damage.
Their algorithm picks a random vertex w in the graph and rounds
every edge (w, u) incident on this “pivot” with probability equal to
the length of the edge; vertices u corresponding to the edges (w, u)
that are not cut by this procedure form w’s cluster; this cluster is
then removed from the graph, and the algorithm recurses on the
remaining graph. This approach gives the best previously known
approximation ratio for the correlation clustering problem on com-
plete graphs, a factor of 2.5.

Our main technical contribution is a more subtle treatment of
the probability of cutting an edge: rather than cutting edge (u, v)
with probability xuv , we cut (u, v) with probability given by some
function f(xuv) (this idea was previously used by Ailon in his al-
gorithm for ranking aggregation [1]). In a departure from all of the
other LP-rounding algorithms for correlation clustering, we use dif-
ferent rounding functions for positive and negative edges. Though
it may at first be surprising that the latter distinction can be help-
ful, we remark that positive and negative constraints do not behave
symmetrically. For example, in a triangle with two positive edges
and one negative edge, the negative edge forces an inconsistency:
any clustering of this triangle must violate at least one constraint.
On the other hand, in a triangle with two negative edges and one
positive edge, there is a valid clustering that does not violate any
constraints. Thus, we see that the positive and negative edges be-
have differently, and we prove that rounding positive and negative
edges of the same LP length with different probabilities gives a
correspondingly better approximation ratio.

In some cases, this distinction leads to results that run counter
to our intuition. One might expect that negative edges should be
cut with higher probability than positive edges. However, this is
not always the case. It turns out that it helps to cut long positive
edges with probability 1, because we can charge them to the LP.
On the other hand, it pays to be careful about cutting long nega-
tive edges, because this might cause too much collateral damage to
other edges.

Our methodology for selecting the rounding functions f+ and
f− is interesting in its own right. By regarding the cost of the al-
gorithm on each kind of triangle as a polynomial in xuv , xvw, xuw
and in f±(xuv), f±(xuv), f±(xuv), then characterizing these mul-
tivariate polynomials, we are able to obtain analytic upper and lower
bounds on f+ and f−. While this does not force our choices of
f+ or f−, it suggests natural candidate functions that can then be
further analyzed. This same worst-case polynomial identification
and bounding approach yields lower bounds on the best possible
approximation ratio that can be achieved by a similar algorithm.
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Approximation Algorithms for Correlation Clustering
PREVIOUS FACTOR OUR FACTOR INTEGRALITY GAP LIMITATION

Complete ≈ 104 [6], 4 [8], 2.5 [3, 27] ≈ 2.06, Thm 1 2 [8] 2.025 (?)
Triangle Inequality 3 [17], 2 [3, 27] 1.5 (?) 1.2 (?) 1.5 (?)
Bipartite 11 [5],4 [2] 3, Thm 1 3 (?) —
K-partite — 3, Thm 1 3 (?) —

Table 1: Previous and our approximation factors, integrality gaps and limitations of our approach. A (?) marks a result that we have deffered
to the full version.

1.3 Other Related Work
As mentioned above, there has been a series of works giv-

ing constant factor approximations for correlation clustering in
complete graphs [6, 8, 3]. A modified version of the Ailon et
al. [3] 3-approximation algorithm can be used as a basis for par-
allel algorithms [11]. Van Zuylen et al. [27] showed that the
2.5-approximation of Ailon et al. can be derandomized without
any loss in approximation factor. Correlation clustering on com-
plete bipartite graphs was first studied by Amit [5], who presents
an 11-approximation. This was subsequently improved to a 4-
approximation by Ailon et al. [2]. For complete graphs with
weights satisfying triangle inequalities a 3-approximation was ob-
tained by Gionis et al. [17] and a 2-approximation by Ailon et
al. [3]. These prior works are summarized in Table 1. In gen-
eral graphs, the problem can be approximated to within a factor of
O(logn), and because it is equivalent to the multicut problem, this
is suspected to be the best possible [8, 14].

Bansal et al. [6] also studied an alternative version of the prob-
lem in which the objective is to approximately maximize the num-
ber of edges that the clustering gets correct: that is, the number
of “+” edges inside clusters and “−” edges going across clusters.
They noted that this “MaxAgree” version can be trivially approx-
imated to within a factor of 2 in arbitrary weighted graphs, and
presented a polynomial time approximation scheme for the version
on complete graphs. Subsequently, Swamy [24] and Charikar, Gu-
ruswami and Wirth [8] developed an improved SDP-based approx-
imation for the MaxAgree problem on arbitrary weighted graphs.
MaxAgree is known to be hard to approximate within a factor of
80/79 for both the unweighted (complete graph) and weighted ver-
sions [8, 25].

A number of other variants of the correlation clustering problem
have been studied. Giotis and Guruswami [18] and Karpinski et
al. [19] studied the variant where the solution is stipulated to con-
tain only a few (constant number of) clusters, and under that con-
straint presented polynomial time approximation schemes. Math-
ieu, Sankur, and Schudy [21] studied the online version of the prob-
lem and give anO(n)-competitive algorithm, which is also the best
possible within constant factors. Mathieu and Schudy [22] intro-
duced a semi-random model, in which every graph is generated as
follows: start with an arbitrary planted partitioning of the graph into
clusters, set labels consistent with the planted partitioning on all
edges, then independently pick every edge into a random subset of
corrupted edges with probability p, and let the adversary arbitrar-
ily change labels on the corrupted edges. Mathieu and Schudy [22]
showed how to get 1 + o(1) approximation under very mild as-
sumptions on p. Their result was extended to other semi-random
models in [20, 10]. The problem was studied in another interesting
stochastic model in [4].

1.4 Organization
In Section 2, we formally describe and generalize the algorithm

and analytical framework of Ailon et al. [3] to accomodate our al-
gorithm and analysis, and lay the groundwork for our analysis with

observations about algorithms within this framework. In Section 3,
we give the analysis that leads to our choices of rounding functions.
Section 4 gives an overview of the analysis of the triples for com-
plete correlation clustering, as well as pictoral proofs of the main
theorem. Appendix A contains the analytical proof for the k-partite
correlation clustering algorithm.

The full version contains all further results, including the analyt-
ical proof of the (2.06 − ε)-approximation for the complete case,
the proof of a lower bound of 2.025 on the approximation ratio of
any algorithm within our framework, new integrality gaps for the
k-partite case and the weighted case with triangle inequalities, our
results for the weighted versions of the problem, and a derandom-
ization of our algorithm.

2. APPROXIMATION ALGORITHM
In this section, we present an approximation algorithm for the

Correlation Clustering Problem that works both for complete graphs
and complete k-partite graphs. For the weighted case of the prob-
lem, we refer the reader to the full version. We denote the set of
positive edges by E+ and the set of negative edges by E−. The
algorithm is based on the approach of Ailon et al. [3]. It iteratively
finds clusters and removes them from the graph. Once all vertices
are clustered, the algorithm outputs all found clusters and termi-
nates.

Initially, the algorithm marks all vertices as active. At step t, it
picks a random pivot w among active vertices, and then adds each
active vertex u to St with probability (1 − puw) independently of
other vertices. Then, the algorithm removes the cluster St from the
graph and marks all vertices in St as inactive. The probability (1−
puw) depends on the LP solution and the type of the pair (u,w): we
set puw = f+(xuw), if (u,w) is a positive edge; puw = f−(xuw),
if (u,w) is a negative edge; and puw = f◦(xuw), if there is no
edge between u and w. Here, xuv is the LP variable corresponding
to the pair (u, v) (we describe the LP in a moment) and f+, f−,
and f◦ are special functions which we will define later. Below we
give pseudo-code for the algorithm.

Input: Graph G, LP solution {xuv}u,v∈V .
Output: Partitioning of vertices into disjoint sets.

• Let V0 = V be the set of active vertices; let t = 0.

• while (Vt 6= ∅)

– Pick a pivot wt ∈ Vt uniformly at random.
– For each vertex u ∈ Vt, set puw:

puw =


f+(xuw), if (u, v) is a positive edge;
f−(xuw), if (u, v) is a negative edge;
f◦(xuw), if no edge between u and v.

(1)

– For each vertex u ∈ Vt, add u to St with probability
(1− puw) independently of all other vertices.
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– Remove St from Vt i.e., let Vt+1 = Vt \ St. Let t =
t+ 1.

• Output S0, . . . , ST , where T is the index of the last iteration
of the algorithm.

This algorithm is probabilistic. We show how to derandom-
ize it in the full version. The main new ingredient of our algo-
rithm is a procedure for picking the probabilities puw. To com-
pute these probabilities, we use the standard LP relaxation intro-
duced by [8]. We first formulate an integer program for Corre-
lation Clustering. For every pair of vertices u and v, we have
a variable xuv ∈ {0, 1} that is equal to the distance between u
and v in the “multicut metric”: xuv = 0 if u and v are in the
same cluster; and xuv = 1 if u and v are in different clusters.
Variables xuv satisfy the triangle inequality constraints (3). They
are also symmetric, i.e. xuv = xvu. Instead of writing the con-
straint xuv = xvu, we have only one variable for each edge (u, v).
We refer to this variable as xuv or xvu. The IP objective is to
minimize the number of violated constraints. We write it as fol-
lows: min

∑
(u,v)∈E+ xuv +

∑
(u,v)∈E−(1 − xuv). Note that a

term xuv in the first sum equals 1 if and only if the correspond-
ing positive edge (u, v) is cut; and a term (1− xuv) in the second
sum equals 1 if and only if the corresponding negative edge (u, v)
is contracted. Thus, this integer program is exactly equivalent to
the Correlation Clustering Problem. We relax the integrality con-
straints xuv ∈ {0, 1} and obtain the following LP.

min
∑

(u,v)∈E+

xuv +
∑

(u,v)∈E−

(1− xuv) (2)

xuv + xvw ≥ xuw for all u, v, w ∈ V (3)
xuu = 0 for all u ∈ V (4)
xuv ∈ [0, 1] for all u, v ∈ V (5)

The approximation ratio of the algorithm depends on the set of
functions {f+, f−, f◦} we use for rounding. We explain how we
pick these functions in Section 3. In Appendix A, we analyze the
specific rounding functions that give improved approximation guar-
antees for complete k-partite graphs, and in the full version we ana-
lyze the rounding functions that give improved approximation guar-
antees for complete graphs (a pictorial proof is given in Section 4).
We prove the following theorems.

THEOREM 2. For complete graphs, the approximation algo-
rithm with rounding functions

f+(x) =


0, if x < a(
x−a
b−a

)2
, if x ∈ [a, b]

1 if x ≥ b

, f−(x) = x,

gives a (2.06 − ε)-approximation for a = 0.19 and b = 0.5095,
and a constant ε with 0 < ε < 0.01.

The proof of Theorem 2 is given in the full version.

THEOREM 3 (SEE SECTION A). For complete k-partite
graphs, the approximation algorithm with rounding functions

f+
3 (x) =

{
0, if x < 1

3

1 if x ≥ 1
3

,

f−3 (x) = x,

f◦3 (x) =

{
3
2
x if x ≤ 2

3

1 if x > 2
3

,

gives a 3-approximation.

Note that the integrality gap for complete graphs is 2 [8], and
the integrality gap for complete k-partite graphs is 3 (see the full
version for a proof). So the algorithm for complete k-partite graphs
optimally rounds the LP; the algorithm for complete graphs nearly
optimally rounds the LP.

2.1 Analysis
In this section, we prove a general statement – Lemma 4 – that

asserts that the approximation ratio of the algorithm is at most α
if a certain condition (depending on α) holds for every triple of
vertices u, v, w ∈ V . We shall assume that f(0) = 0 for each
f ∈ {f+, f−, f◦}, and, particularly, that the algorithm always
puts the pivot wt in the set St.

Consider step t of the algorithm. At this step, the algorithm finds
and removes set St from the graph. Observe, that if u ∈ St or
v ∈ St, then the constraint (u, v) is either violated or satisfied
right after step t. Specifically, if (u, v) is a positive edge, then the
constraint (u, v) is violated if exactly one of the vertices – u or v –
is in St. If (u, v) is a negative constraint, then (u, v) is violated if
both u and v are in St. Denote the number of violated constraints
at step t by ALGt. Then,

ALGt =
∑

(u,v)∈E+

u,v∈Vt

(1(u ∈ St; v /∈ St) + 1(u /∈ St; v ∈ St))

+
∑

(u,v)∈E−

u,v∈Vt

1(u ∈ St; v ∈ St).

Here 1(E) denotes the indicator function of the event E . We want
to charge the cost of constraints violated at step t to the LP cost of
edges removed at step t. The LP cost of edges removed at this step
equals

LPt =
∑

(u,v)∈E+

u,v∈Vt

1(u ∈ St or v ∈ St)xuv

+
∑

(u,v)∈E−

u,v∈Vt

1(u ∈ St or v ∈ St)(1− xuv).

Note, that
∑T
t=0 LPt = LP , since every edge is removed from the

graph exactly once (compare the expression above with the objec-
tive function (2)). If we show that E[ALGt] ≤ αE[LPt] for all t,
then we will immediately get an upper bound on the expected total
cost of the clustering:

E[ALG] = E
[ T∑
t=0

ALGt
]
≤ αE

[ T∑
t=0

LPt
]
= αLP.

Here, we use thatXs =
∑s
t=0

(
αLPt−ALGt

)
is a submartingale

(i.e., E[Xs+1 | Xs] ≥ Xs) , and T is a stopping time.
Let e.costw(u, v) be the conditional probability of violating the

constraint (u, v) given that the pivot wt is w (assuming u, v, w ∈
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Vt, and u 6= v). We say that e.costw(u, v) is the expected cost of
the constraint (u, v) given pivotw. Similarly, let e.lpw(u, v) be the
conditional probability of removing the edge (u, v) given the pivot
is w multiplied by the LP cost of the edge (u, v). (The LP cost
equals xuv for positive edges; and (1 − xuv) for negative edges.)
That is,

e.costw(u, v) =

=


puw(1− pvw) + (1− puw)pvw, if (u, v) ∈ E+;

(1− puw)(1− pvw), if (u, v) ∈ E−;
0, if (u, v) /∈ E;

(6)

and

e.lpw(u, v) =

=


(1− puwpvw)xuv, if (u, v) ∈ E+;

(1− puwpvw)(1− xuv), if (u, v) ∈ E−;
0, if (u, v) /∈ E.

(7)

The expressions above do not depend on the set of active vertices
Vt. The cut probabilities puw and pvw are defined by the algo-
rithm (see equation (1)). Note that e.costu(u, v), e.costv(u, v),
e.lpu(u, v), and e.lpv(u, v) are well defined. We also formally
define e.costw(u, u) and e.lpw(u, u) using formulas (6) and (7).
In the analysis of the algorithm for complete graphs, we assume
that each vertex u has a positive self-loop, thus e.costw(u, u) =
2(1− puw)puw, e.lpw(u, u) = 0.

We now write E[ALGt] and E[LPt] in terms of e.cost and e.lp:

E[ALGt | Vt] =
∑

(u,v)∈E
u,v∈Vt

( 1

|Vt|
∑
w∈Vt

e.costw(u, v)
)

=
1

2|Vt|
∑

u,v,w∈Vt:u6=v

e.costw(u, v);

E[LPt | Vt] =
∑

(u,v)∈E
u,v∈Vt

( 1

|Vt|
∑
w∈Vt

e.lpw(u, v)
)

=
1

2|Vt|
∑

u,v,w∈Vt:u6=v

e.lpw(u, v).

We divided the expressions on the right hand side by 2, be-
cause, in the sum, we count every e.costw(u, v) and e.lpw(u, v)
twice (e.g., the first sum contains the terms e.costw(u, v) and
e.costw(v, u)). We now add terms e.costw(u, u) to the first sum
and terms e.lpw(u, u) to the second sum. Then, we group all terms
containing u, v, and w together. Note that e.costw(u, u) ≥ 0 and
e.lpw(u, u) = 0. We get

E[ALGt | Vt] ≤ (8)

≤ 1

6|Vt|
∑

u,v,w∈Vt

e.costw(u, v) + e.costv(w, u) + e.costu(v, w)︸ ︷︷ ︸
ALG(uvw)

;

and

E[LPt | Vt] = (9)

=
1

6|Vt|
∑

u,v,w∈Vt

e.lpw(u, v) + e.lpv(w, u) + e.lpu(v, w)︸ ︷︷ ︸
LP (uvw)

.

We denote each term in the first sum byALG(uvw) and each term
in the second sum by LP (uvw). Observe, that if ALG(uvw) ≤

αLP (uvw) for all u, v, w ∈ V , then E[ALGt] ≤ αE[LPt], and,
hence, E[ALG] ≤ αLP . We thus obtain the following lemma.

LEMMA 4. Fix a set of functions {f+, f−, f◦} with f+(0) =
f−(0) = f◦(0) = 0. If ALG(uvw) ≤ αLP (uvw) for every
u, v, w ∈ V (see (6), (7), (8), and (9) for definitions), then the
expected number of violated constraints at step t is bounded by α
times the expected LP volume removed at step t:

E[ALGt] ≤ αE[LPt].

Consequently, the expected cost of the clustering returned by the
algorithm is upper bounded by αLP .

2.2 Triple-Based Analysis
To finish analysis we need to show that ALG(uvw) ≤

αLP (uvw) for every triple of vertices u, v, w ∈ V . We ana-
lyze our choice of functions f for complete k-partite graphs in Ap-
pendix A; the analysis of our choice of f for complete graphs is
deferred to the full version. We show that functions from The-
orem 2 satisfy the conditions of Lemma 4 with α = 2.06 for
complete graphs; and functions from Theorem 3 satisfy the con-
ditions of Lemma 4 with α = 3 for complete k-partite graphs. To
show that ALG(uvw) ≤ αLP (uvw) for every triangle uvw, we
consider all triangles uvw with LP values satisfying triangle in-
equalities with all possible types of edges: positive, negative, and
“missing” or “neutral” edges. For brevity, we refer to triangles as
(suv, svw, suw) where each s is one of the symbols “+”, “−” or
“∅”. For example, a (+,−,∅)-triangle is a triangle having two
edges: a positive edge and a negative edge; the third edge is miss-
ing.

The analysis of the functions f requires considering many cases.
We show that ALG(uvw) ≤ αLP (uvw) for all (s1, s2, s3)-
triangles with edge lengths (x, y, z) satisfying triangle inequalities
that may possibly appear in each type of graph (we use that there
are no neutral edges in a complete graph, and that no triangle in
a complete k-partite graph contains exactly two neutral edges). In
other words, we fix types of edges for every triangle and then con-
sider a function of edge lengths xuv ,xvw, xuw, and cut probabil-
ities puv , pvw, puw formally defined using algebraic expressions
(6), (7), (8), and (9):

C(xuv, xvw, xuw, puv, pvw, puw) = αLP (uvw)−ALG(uvw).

Note, that this function is defined even for those triangles that are
not present in our graph. We show that

C(xuv, xvw, xuw, fuv(xuv), fvw(xvw), fuw(xuw)) ≥ 0,

for all xuv, xvw, xuw ∈ [0, 1] satisfying the triangle inequality.
Here, fuv , fvw and fuw are rounding functions for the edges
(u, v), (v, w) and (u,w) respectively. We first prove that for many
rounding functions f , and, particularly, for rounding functions we
use in this paper, it is sufficient to verify the inequality C ≥ 0 only
for those xuv , xvw, and xuw for which the triangle inequality is
tight, and a few corner cases.

LEMMA 5. Suppose that f+ is a monotonically non-decreasing
piecewise convex function; f− is a monotonically non-decreasing
piecewise concave function; and f◦ is a monotonically non-
decreasing function. Let A+ be the set of endpoints of con-
vex pieces of f+, and A− be the set of endpoints of the con-
cave pieces of f−. (Note that {0, 1} ⊂ A+ and {0, 1} ⊂
A−.) If the conditions of Lemma 4 are violated for some
(suv, svw, suw)-triangle with edge lengths (x∗uv, x

∗
vw, x

∗
uw) i.e.,
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αLP (uvw) − ALG(uvw) < 0, then there exists possibly an-
other triangle (xuv, xvw, xuw) (satisfying triangle inequalities) for
which αLP (uvw)−ALG(uvw) < 0 such that either

1. the triangle inequality is tight for (xuv, xvw, xuw); or

2. the lengths of all positive edges of the triangle belong toA+;
the lengths of all negative edges of the triangle belong toA−;
the lengths of all neutral edges belong to {0, 1}.

PROOF. We show that the function

C(xuv, xvw, xuw, fuv(xuv), fvw(xvw), fuw(xuw))

has the global minimum over the region satisfying triangle inequal-
ities at a point (xuv, xvw, xuw) satisfying (1) or (2). By slightly
perturbing functions f , we may assume that these functions are
strictly increasing.2 Suppose that C has a minimum at point x.
Consider one of the edges, say, xuv whose length does not lie in
the corresponding set A+, A− or {0, 1}. Let puv = fuv(xuv);
and let guv(puv) = (fuv)−1(puv). Note that the function C is a
multilinear polynomial of x’s and p’s; in particular, it is linear in
puv and xuv . Moreover, it does not have monomials containing
both xuv and puv . This follows from the formal definition of C.
Let us fix all variables except for xuv and puv . We now express
xuv as a function of puv: xuv = guv(puv). The function guv is
locally concave if (u, v) is a positive edge; and it is locally con-
vex if (u, v) is a negative edge. Here we use that xuv is not in
A+ or A−. Observe that the only term containing xuv in C comes
from the expression for LP (uvw). Thus, the coefficient of xuv is
positive if (u, v) is a positive edge; and it is negative if (u, v) is a
negative edge. The function C does not depend on xuv if (u, v) is
a neutral edge (of course, C may depend on puv). So the function
C(guv(puv), xvw, xuw, puw, fvw(xvw), fuw(xuw)) is a concave
function of puw (when xvw and xuw are fixed). Therefore, if we
slightly decrease or increase puw the value of C will decrease. But
we assumed that C has the global minimum at x. Hence, x lies on
the boundary of the region constrained by the triangle inequality.
This concludes the proof.

We leave the analysis for the complete case in the full version,
and include the considerably simpler analysis for the k-partite case
in Appendix A.

3. CHOOSING ROUNDING FUNCTIONS
We now discuss how we came up with the rounding functions

f for complete graphs. We need to find functions f+ and f− that
satisfy the conditions of Lemma 4, i.e., such that for all triangles
uvw, αLP (uvw)− ALG(uvw) ≥ 0. (For brevity, we shall drop
the argument uvw of the ALG and LP functions from now on.)
Lemma 5 suggests that we only need to care about triangles for
which the triangle inequality is tight. We focus on some special
families of such triangles and obtain lower and upper bounds of
f+ and f−. Then, we find functions satisfying these constraints.
Later, we formally prove that the functions we found indeed give
α = 2.06 approximation. We sketch the proof in Section 4 and
give a detailed proof in the full version.

We first consider a (+,−,−)-triangle with edge lengths (0, x, x).

LEMMA 6. For a (+,−,−)-triangle with edge lengths (0, x, x),

ALG

LP
=

1− f−(x)2

1− x .

2Formally, we consider a sequence of strictly monotone functions
uniformly converging to our rounding functions.

PROOF. We simply calculateALG andLP using (6) and (7).

COROLLARY 7. Any function f− that achieves an α-approxi-
mation on all (+,−,−)-triangles satisfies

f−(x) ≥
√

1− α(1− x)

for all x ∈ [0, 1].

CLAIM 8. The function f−(x) = x does not violate the condi-
tions of Corollary 7 for α = 2.06.

Fixing α = 2.06, the function we select is restricted to the blue
region below.

Thus we take f−(x) = x, as this choice is an easy candidate for
the analysis. Now, we bound f+ using the tight case for the linear
rounding, a (+,+,−)-triangle with edge lengths (x, x, 2x).

LEMMA 9. Any function f+ that achieves an α-approximation
ratio on all (+,+,−)-triangles has

f+(x) ≥

≥
4x− 2αx2 −

√
(2αx2 − 4x)2 − (1− α+ 4x)(1 + α− 2αx)

(1 + α− 2αx)
,

for x ∈ [0, 1/2], if f−(x) = x.

PROOF. Again, we calculate αLP − ALG using (6) and (7).
This yields a quadratic function in f+(x):

αLP −ALG = −1 + α− 4x− 4x(−2 + αx)f+(x)

− (1 + α− 2αx)f+(x)2.

Solving for αLP − ALG ≥ 0 in terms of f+(x), we get our
result.

This lower bound on f+ is necessary for approximating (+,+,−)-
triangles well, but choosing a large f+ has consequences for the
approximation ratio of (+,+,+)-triangles. We use a (+,+,+)-
triangle with edge lengths (x, x, 0) to obtain an upper bound on
f+.

LEMMA 10. Any function f+ that achieves anα-approximation
ratio on all (+,+,+)-triangles satisfies for all x ∈ [0, 1],

f+(x) ≤ 1−
√
1− αx.

PROOF. We compute αLP −ALG using (6) and (7) as before.
This yields a different quadratic function in f+(x):

αLP −ALG = 2(αx− 2f+(x) + f+(x)2).

Solving for αLP − ALG ≥ 0 in terms of f+(x), we get our
result.
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The bounds from Lemma 10 and Lemma 9 give a restricted re-
gion in which f+(x) may be for x ∈ [0, 1

2
] and x ∈ [0, 1

α
] to get

an α-approximation. We chose f+ so that it would violate neither
constraint, and also be easy to analyze.

CLAIM 11. Functions f+ and f− from Theorem 2 do not vi-
olate the conditions in Lemma 10 or Lemma 9 for an α = 2.06
approximation when a = 0.19, b = 0.5095.

The parameters a, b were chosen computationally within these
analytic bounds so as to minimize α.

4. PICTORIAL PROOFS
Here we give a pictorial proof of our main result, Theorem 2.

This proof serves as an illustration for an analytical proof we present
in the full version.

To prove Theorem 2, we use the framework presented in Section
2.2, bounding the approximation ratio of each triangle for every set
of LP weights permitted by the constraints. Lemma 5 allows us to
consider only triangles for which the triangle inequality is tight, that
is, triangles of the form (x, y, x+ y). Figure 1, Figure 2, Figure 3,
and Figure 4 on the following page are plots of the polynomials
2.06·LP (uvw)−ALG(uvw) when the triangle inequality is tight;
the fact that each of these polynomials is positive in the range of
possible LP weights proves Theorem 2.

The analytical proof in the full version proceeds by showing that
this difference polynomial is positive for all possible LP weights.
In the first two cases, we take partial derivatives to find the worst
triangle lengths in terms of a single variable, then bound the roots
of the polynomials; in the latter two cases we are able to provide a
factorization for the polynomial that is positive term-by-term. For
the complete argument, see the full version.
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ALG(uvw) for (−,−,−)-triangles with tight triangle
inequality constraints.
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APPENDIX
A. ANALYSIS OF THE K-PARTITE CASE

PROOF PROOF OF THEOREM 3. By Lemma 4, it suffices to
show that ALG(uvw) ≤ LP (uvw) for every triangle uvw in
the graph. There are 7 possible types of triangles in a com-
plete k-partite graph: (+,+,+)-triangles, (+,+,−)-triangles,
(+,−,−)-triangles, and (−,−,−)-triangles may exist when each
vertex is a member of different partitions; (+,+,∅)-triangles,
(+,−,∅)-triangles, and (−,−,∅)-triangles can occur when two
vertices are members of the same partition and the third vertex is
a member of a different partition. When all three vertices belong
to one partition, all edges are neutral, and so none contribute to the
cost.

We adopt the convention that the triangles have LP lengths
(a, b, c), with vertex u opposite edge b, vertex v opposite edge

c, and vertex w opposite edge a (see figure below). Costs in-
curred when vertex x ∈ {u, v, w} is a pivot will be enclosed in
square brackets with subscript x, as in [cost]x. Instead of writing,
ALG(uvw) and LP (uvw), we write ALG and LP .

u

a

v
b

w

c

(+,−,∅)-Triangles: We first analyze the most interesting case:
what happens if our triangle has edge labels (+,−,∅). Consider a
(+,−,∅)-triangle with side lengths (a, b, c) respectively. We have

ALG = [(1− puv)(1− puw)]u + [(1− puw)pvw + (1− pvw)puw]w
= 1− f+

3 (a) + f−3 (b) + f+
3 (a)f◦3 (c)− 2f−3 (b)f◦3 (c);

LP = [(1− b) · (1− puwpuv)]u + [a · (1− puwpvw)]w
= (1− b)(1− f+

3 (a)f◦3 (c)) + a(1− f−3 (b)f◦3 (c)).

Since f+
3 and f◦3 are piecewise functions, we consider four cases.

1. If a < 1/3, c < 2/3, then LP = 1 − b + a − 3
2
abc, and

ALG = 1 + b− 3bc. So,

3 · LP −ALG = 2 + 3a+ b(3c− 4− 9

2
ac)

≥ 2 + 3a+ (a+ c)(3c− 4− 9

2
ac)

= (2− a) + ac(3− 9

2
a− 9

2
c) + (3c2 − 4c).

The inequality above follows from the triangle inequality con-
straints b ≤ a + c. We now bound each term separately using the
assumptions a < 1/3 and c < 2/3: We have (2 − a) > 5/3,
(3− 9a/2− 9c/2) ≥ −3/2, and (3c2 − 4c) ≥ −4/3. Thus,

3 · LP −ALG ≥ 1
3
− 3

2
ac ≥ 0.

as desired.

2. If a < 1
3

, c ≥ 2
3

, then LP = 1− b+a−ab, andALG = 1− b.
Because a− ab > 0, ALG ≤ LP , as desired.

3. If a ≥ 1
3

, c < 2
3

, then LP = 1− b− 3
2
c+ 3

2
bc+ a− 3

2
abc and

ALG = b+ 3
2
c− 3bc. We have

3 · LP −ALG = 3 + 3a− 4(b+ c) + 15
2
bc− 9

2
abc

≥ 4− 4(b+ c) + 15
2
bc− 3

2
bc

= 4(1− b)(1− c),

where in the second inequality we applied a ≥ 1/3. Thus,ALG ≤
3 · LP .

4. If a ≥ 1
3

, c ≥ 2
3

, then LP = 0 and ALG = 0 as well, so
ALG ≤ 3 · LP .

We now bound the expected costs of the 6 other triangles.

(+,+,+)-Triangles: If a, b, c < 1
3

or a, b, c ≥ 1
3

, then either no
edges are cut and the algorithm makes no mistakes, or all edges
are cut and no edge is ever charged unsafely, so ALG = 0. The
remaining cases are a, b < 1

3
≤ c and a < 1

3
≤ b, c. In both cases,

ALG = [f+
3 (c)(1− f+

3 (a)) + f+
3 (a)(1− f+

3 (c))]u

+ [f+
3 (a)(1− f+

3 (b)) + f+
3 (b)(1− f+

3 (a))]v

+ [f+
3 (b)(1− f+

3 (c)) + f+
3 (c)(1− f+

3 (b))]w,
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LP = [b(1− f+
3 (c)f+

3 (a))]u + [c(1− f+
3 (a)f+

3 (b))]v

+ [a(1− f+
3 (b)f+

3 (c))]w.

When a, b < 1
3
≤ c, ALG = 2, LP = a + b + c ≥ 2c ≥ 2

3
,

where we apply the LP triangle inequality constraints. When a <
1
3
≤ b, c, ALG = 2, LP = c+ b ≥ 2

3
. Therefore 3 · LP ≥ ALG

as desired.

(−,−,−)-Triangles: In this case, the function f−3 is the only one
participating in the costs; the costs are

ALG = [(1− f−3 (a))(1− f−3 (c))]u + [(1− f−3 (a))(1− f−3 (b))]v

+ [(1− f−3 (c))(1− f−3 (b))]w

= 3− 2a− 2b− 2c+ ab+ bc+ ac,

and

LP = [(1− b)(1− f−3 (a)f−3 (c))]u + [(1− c)(1− f−3 (a)f−3 (b))]v

+ [(1− a)(1− f−3 (c))f−3 (b))]w

= 3− a− b− c− ab− ac− bc+ 3abc.

We verify that the 3-approximation holds:

3 · LP −ALG = 6− a− b− c− 4ab− 4ac− 4bc+ 9abc

= 6− a− b− 4ab− c(4a(1− b)
+ 4b(1− a) + (1− ab))
≥ 5− 5a− 5b+ 5ab = 5(1− a)(1− b),

where in the third inequality we have applied c ≤ 1. Thus, 3·LP ≥
ALG as desired.

(+,+,−)-Triangles: Here, we must verify the cases a, b < 1
3

,
a < 1

3
≤ b, and 1

3
≤ a, b. In all cases,

ALG = [f+
3 (a)(1− f−3 (c)) + f−3 (c)(1− f+

3 (a))]u

+ [(1− f+
3 (a))(1− f+

3 (b))]v

+ [f+
3 (b)(1− f−3 (c)) + f−3 (c)(1− f+

3 (b))]w,

LP = [b(1− f+
3 (a)f−3 (c))]u + [(1− c)(1− f+

3 (a)f+
3 (b))]v

+ [a(1− f+
3 (b)f−3 (c))]w.

When a, b < 1
3

, we haveALG = 1+2c, LP = 1−c+b+a ≥ 1,
where we have applied the triangle inequality constraint to bound
the LP. Since c ≤ 1, we have 3 · LP ≥ ALG.

When a < 1
3
≤ b, we have ALG = 1, LP = 1 + a+ b− c−

ac ≥ 1 − ac ≥ 2
3

, where we have applied the triangle inequality
constraint and the fact that ac ≤ 1

3
.

When 1
3
≤ a, b, we have ALG = 2(1 − c), LP = b(1 − c) +

a(1−c) ≥ 2
3
(1−c), where we have applied the fact that a+b ≥ 2

3
.

Thus, we have 3 · LP ≥ ALG in this case as well.

(+,−,−)-Triangles: Here we must verify two cases: a < 1
3

and
a ≥ 1

3
. In both cases, the costs are

ALG = [(1− f+
3 (a))(1− f−3 (c))]u + [(1− f+

3 (a))(1− f−3 (b))]v

+ [f−3 (c)(1− f−3 (b)) + f−3 (b)(1− f−3 (c))]w,

LP = [(1− b)(1− f+
3 (a)f−3 (c))]u + [(1− c)(1− f+

3 (a)f−3 (b))]v

+ [a(1− f−3 (b)f−3 (c))]w.

When a < 1
3

, ALG = 2 − 2bc, LP = 2 − b − c + a − abc. We
calculate,

3 · LP −ALG = 4− 3b− 3c+ 3a+ 2bc− 3abc

= 4(1− b)(1− c) + b+ c− 2bc+ 3a(1− bc)
= (1− bc) + 3(1− b)(1− c) + 3a(1− bc) ≥ 0,

as desired.
When a ≥ 1

3
, ALG = c+ b− 2bc, LP = 2− 2b− 2c+2bc+

a(1− bc). Again we verify,

3 · LP −ALG = 6− 7b− 7c+ 8bc+ 3a(1− bc)
≥ 7− 7b− 7c+ 7bc

= 7(1− b)(1− c) ≥ 0,

where to get the inequality we applied the assumption a ≥ 1
3

.

(+,+,∅)-Triangles: Here, when c ≥ 2
3

, the rounding is deter-
ministic: if a < 1

3
≤ b, ALG = 1, LP = b ≥ 1

3
; if 1

3
≤ a, b,

the cost to the algorithm is zero. Crucially, it is not possible to have
both a, b < 1

3
, because a+ b ≥ c ≥ 2

3
.

Now we deal with the cases where c < 2
3

. The costs are

ALG = [f◦3 (c)(1− f+
3 (a)) + f+

3 (a)(1− f◦3 (c))]u
+ [f◦3 (c)(1− f+

3 (b)) + f+
3 (b)(1− f◦3 (c))]w

LP = [b(1− f◦3 (c)f+
3 (a))]u + [a(1− f◦3 (c)f+

3 (b))]w

When a, b < 1
3

, ALG = 3c, and LP = a + b ≥ c, where we
applied the triangle inequality.

When a < 1
3
≤ b, we haveALG = 1, LP = b+a(1− c) ≥ 1

3
,

by our assumption on b.
For 1

3
≤ a, b, ALG = 2(1 − c) and LP = (b + a)(1 − c) ≥

2
3
(1− c). Therefore, 3 · LP ≥ ALG holds in all cases.

(−,−,∅)-Triangles: Here, when c ≥ 2
3

, the algorithm never in-
curs cost on unsafe edges. Therefore, we must simply calculate the
costs when c < 2

3
:

ALG = [(1− f◦3 (c))(1− f−3 (a))]u + [(1− f◦3 (c))(1− f−3 (b))]w

= (1− 3
2
c)(2− a− b),

LP = [(1− b)(1− f◦3 (c)f−3 (a))]u + [(1− a)(1− f◦3 (c)f−3 (b))]w

= (1− b)(1− 3
2
ac) + (1− a)(1− 3

2
bc)

We verify that 3 · LP ≥ ALG:

LP −ALG = 3c(1− b)(1− a) ≥ 0.

Thus the approximation holds.
This concludes the case analysis for k-partite complete graphs.
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