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Feedback Vertex Set Problems 

• Given: a collection of cycles in a graph 

• Goal:  break them, removing a small # of vertices 

Example: Collection = All cycles 

X X ⇒ 

Weighted vertices => remove set of min cost 



FVS: Flavors and toppings  
• All cycles = Feedback Vertex Set  

• All Directed cycles = Directed FVS 

• All odd-length cycles = Bipartization 

• Cycles through a subset of vertices = Subset FVS 

X 

⇒ 



FVS in general graphs 

• NP-hard (even in planar graph [Yannakakis]) 

 
Problem Approximation 

FVS 2 [Becker, Geiger; Bafna, Berman, Fujito] 

Bipartization 𝑶(log 𝒏) [Garg, Vazirani, Yannakakis] 

Directed  FVS 𝑶 log 𝒏 log log 𝒏  [Even, Naor, Schieber, Sudan] 

Subset FVS 8 [Even, Naor, Zosin] 

• MAX-SNP complete [Lewis, Yannakakis; Papadimitriou, Yannakakis] =>  
• 1.3606, if  P ≠ 𝑁𝑃 [Dinur, Safra] 

• 2 − 𝜖 under UGC [Khot, Regev] 



FVS in planar graphs (via primal-dual) 
• NP-hard (even in planar graph [Yannakakis]) 

 Problems Previous work This work 

FVS 10  
[Bar-Yehuda, 

Geiger, Naor, Roth] 

 

3 
[Goemans, 

Williamson, 96] 

 

 
2.4 

(2.57) 
 

BIP, D-FVS, S-FVS 

Node-Weighted 
Steiner Forest 

 
6 

 [Demaine, 

Hajiaghayi, 
Klein’09] 

3 
[Moldenhauer’11] 

More general 
class of problems 



Bigger picture 

General 

Graphs 

Planar 

Vertices 

Weights 

Edges 

• Feedback Edge Set in general graphs = Complement of MST 

• Planar edge-weighted BIP and D-FVS are also in P  

• Planar edge-weighted Steiner Forest has a PTAS [Bateni, 

Hajiaghayi, Marx, STOC’11] 

• Planar unweighted Feedback Vertex Set has a PTAS [Baker; 

Demaine, Hajiaghayi, SODA’05] 



• Uncrossing: 

 

 

 

 

• Uncrossing property of a family of cycles 𝐶: 

 

 

• Holds for all FVS problems, crucial for the 
algorithm of GW 

Class 1: Uncrossing property 

𝑪𝟐 𝑪𝟏 

𝑪′𝟐 𝑪′𝟏 

𝑪′𝟏 

𝑪′𝟐 

For every two crossing cycles 𝑪𝟏, 𝑪𝟐 ∈ 𝐶, one of their 
two uncrossings has 𝑪′𝟏, 𝑪′𝟐 ∈ 𝐶. 



Proper functions [GW, DHK] 
• A function 𝒇: 2𝑉 → 0,1  is proper if 𝒇 ∅ = 0,  

– Symmetry: 𝒇 𝑺 = 𝒇(𝑉 ∖ 𝑺) 
– Disjointness: If 𝑺𝟏 ∩ 𝑺𝟐 = ∅ and 𝒇 𝑺𝟏 = 𝒇 𝑺𝟐 = 0 => 
𝒇 𝑺𝟏 ∪ 𝑺𝟐 = 0 

 
• A set 𝑺 ⊆ 𝑉 is active, if 𝒇 𝑺 = 1 
• Boundary 𝚪 𝑺 : 

 
 
 
 

• A boundary 𝚪 𝑺 ⊆ 𝑉 is active, if 𝑺 is active 
 
 

 
 

𝐒 𝚪(𝑺) 



Class 2: Hitting set IP [DHK] 
• The class of problems: 
 Minimize:    𝑤 𝑣 𝑥 𝑣 𝑣 ∈V  

 Subject to:    𝑥 𝑣 ≥ 𝒇(𝑺)𝑣∈Γ(𝑺) ,  for all 𝑺 ⊆ 𝑉 

   𝑥𝑣 ∈ *0,1+, 
where 𝒇 is a proper function 

• Theorem: 𝒇 is proper => the collection of all active 
boundaries forms an uncrossable family (requires triangulation) 

• Proof sketch: 𝒇 is proper => in one of the cases both 
interior sets are active => their boundaries are active 

𝑪𝟐 𝑪𝟏 

𝑪′𝟐 𝑪′𝟏 

𝑪′𝟏 

𝑪′𝟐 



• Example: Node-Weighted Steiner Forest  

– Connect pairs (𝒔𝒊, 𝒕𝒊) via a subset of nodes of min 
cost 

– Proper function 𝒇(𝑺) = 1 iff |𝑺 ∩  *𝒔𝒊, 𝒕𝒊+| = 1 for 
some i. 

 

𝑺 

Class 1 = Class 2 

𝒔𝟐 
𝒕𝟏 

𝒔𝟏 

𝒕𝟐 
𝒔𝟐 

𝒕𝟏 

𝒔𝟏 

𝒕𝟐 



Primal-dual method (local-ratio version)
  

• Given: G (graph), w (weights), 𝑪 (cycles) 

– 𝒘 = 𝑤 

– 𝑺 = set of all vertices of zero weight 

– While 𝑺 is not a hitting set for 𝑪 

• 𝑴 = collection of cycles returned by oracle Violation (G, C, 𝑺) 

• 𝒄𝑴 𝑢 = # of cycles in M, which contain 𝑢 

• 𝒘 𝒖 = 𝒘 𝒖 − min
𝑢∈𝑉∖𝑆
 
𝒘 𝒖

𝒄𝑴 𝑢
⋅ 𝒄𝑴 𝑢  

• 𝑺 = set of all vertices of zero weight 𝒘  

– Return a minimal hitting set 𝐻 ⊂ 𝑺 for 𝑪 



Oracle 1 = Face-minimal cycles [GW] 

• Example for Subset FVS with 𝜸 = 𝟑: 

 

 

 

 

 

• Oracle returns all gray cycles => all white 
nodes are selected 

• Cost = 3 * # blocks, OPT ∼ (1 + 𝜖) * # blocks 



Oracle 2 = Pocket removal [GW] 
• Pocket defined by two cycles: region between 

their common points containing another cycle  

• New oracle: no pocket => all face-minimal cycles, 
otherwise run recursively inside any pocket. 

• Our analysis: 𝜸 =
𝟏𝟖

𝟕
≈ 𝟐. 𝟓𝟕 



Oracle 3 = Triple pocket removal 

• Triple pocket = region defined by three cycles 

• Analysis: 𝜸 = 𝟐. 𝟒  



Open problems  

For our class of node-weighted problems: 

• Big question: APX-hardness or a PTAS? 

• Integrality gap = 2, how to approach it? 

– Pockets of higher multiplicities are harder to analyze 

– Pockets cannot go beyond 2 + 𝜹 



Applications and ramifications 

• Applications: from maintenance of power 
networks to computational sustainability 

• Example: VLSI design. 
• Primal-dual approximation algorithms of Goemans and 

Williamson are competitive with heuristics [Kahng, Vaya, 

Zelikovsky] 

• Connections with bounds on the size of FVS 
• Conjectures of Akiyama and Watanabe and Gallai and 

Younger [see GW for more details] 



Approximation factor 

• Theorem [GW’96]: If for any minimal solution H 
the set M returned by the oracle satisfies: 

 𝒄𝑴 𝑢

𝒖∈𝑯

≤ 𝜸 𝑴 , 

then the primal-dual algorithm has approximation 𝜸. 

• Examples of oracles: 
– Single cycle: 𝜸 ≤ 𝟏𝟎 [Bar-Yehuda, Geiger, Naor, Roth] 

– Single cycle: 𝜸 ≤ 5 [Goemans, Williamson] 

– Collection of all face-minimal cycles: 𝜸 ≤ 3 [Goemans, 
Williamson] 

 

 


