

Computational and

Communication
Complexity in Massively

Parallel Computation

Grigory Yaroslavtsev
(Indiana University, Bloomington)

http://grigory.us

http://grigory.us/

Cluster Computation (a la BSP)
• Input: size n (e.g. n = billions of edges in a graph)
• 𝑴 Machines, 𝑺 Space (RAM) each

– Constant overhead in RAM: 𝑴 ⋅ 𝑺 = 𝑂(𝒏)
– 𝑺 = 𝒏1−𝜖 , e.g. 𝜖 = 0.1 or 𝜖 = 0.5 (𝑴 = 𝑺 = 𝑂(𝒏))

• Output: solution to a problem (often size O(𝒏))
– Doesn’t fit in local RAM (𝑺 ≪ 𝒏)

+ 𝑴 machines +
S space

𝐈𝐧𝐩𝐮𝐭: size 𝒏 ⇒ ⇒ 𝐎𝐮𝐭𝐩𝐮𝐭

+ 𝑴 machines +
S space

Cluster Computation (a la BSP)
• Computation/Communication in 𝑹 rounds:

– Every machine performs a near-linear time
computation => Total user time 𝑂(𝑺𝟏+𝒐(𝟏)𝑹)

– Every machine receives at most 𝑺 bits of information =>
Total communication 𝑂(𝒏𝑹).

Goal: Minimize 𝑹. Ideally: 𝑹 = constant.

𝑶(𝑺𝟏+𝒐(𝟏)) time

≤ 𝑺 bits

MapReduce-style computations

What I won’t discuss today
• PRAMs (shared memory, multiple processors) (see

e.g. [Karloff, Suri, Vassilvitskii‘10+)
– Computing XOR requires Ω (log 𝑛) rounds in CRCW PRAM
– Can be done in 𝑂(log𝒔 𝑛) rounds of MapReduce

• Pregel-style systems, Distributed Hash Tables (see
e.g. Ashish Goel’s class notes and papers)

• Lower-level implementation details (see e.g.
Rajaraman-Leskovec-Ullman book)

Models of parallel computation
• Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models

Con: Many parameters, hard to design algorithms

• Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-

Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10, Goodrich-Sitchinava-Zhang’11,
Beame, Koutris, Suciu’13, Andoni, Onak, Nikolov, Y.’14]

Pros:

• Inspired by modern systems (MapReduce, Dryad, Spark, Giraph, …)

• Few parameters, simple to design algorithms

• New algorithmic ideas, robust to the exact model specification

• # Rounds is an information-theoretic measure => can prove
unconditional results

Con: sometimes not enough to model more complex behavior

• Cloud computing platforms (all offer free trials):

– Amazon EC2 (1 CPU/12mo)

– Microsoft Azure ($200/1mo)

– Google Compute Engine ($200/2mo)

• Distributed Google Code Jam

– First time in 2015:
https://code.google.com/codejam/distributed_index.html

– Caveats:

• Very basic aspects of distributed algorithms (few rounds)

• Small data (~1 𝐺𝐵, with hundreds MB RAM)

• Fast query access (~0.01 𝑚𝑠 per request), “data with queries”

Getting hands dirty

https://code.google.com/codejam/distributed_index.html

Business perspective

• Pricings:

– https://cloud.google.com/pricing/

– https://aws.amazon.com/pricing/

• ~Linear with space and time usage

– 100 machines: 5K $/year

– 10000 machines: 0.5M $/year

• You pay a lot more for using provided
algorithms

– https://aws.amazon.com/machine-
learning/pricing/

https://cloud.google.com/pricing/
https://aws.amazon.com/pricing/
https://aws.amazon.com/machine-learning/pricing/
https://aws.amazon.com/machine-learning/pricing/
https://aws.amazon.com/machine-learning/pricing/

Sorting: Terasort

• Sort Benchmark: http://sortbenchmark.org/
• Sorting 𝒏 keys on 𝑴 = 𝑶(𝒏𝝐) machines

– Would like to partition keys uniformly into blocks: first 𝒏/𝑴,
second 𝒏/𝑴, etc.

– Sort the keys locally on each machine

• Build an approximate histogram:
– Each machine takes a sample of size 𝒔
– All 𝑴 ∗ 𝒔 ≤ 𝑺 = 𝒏𝟏−𝝐 samples are sorted locally
– Blocks are computed based on the samples

• By Chernoff: 𝐌 ∗ 𝒔 = 𝑂
𝑙𝑜𝑔 𝒏

𝜶𝟐
 samples suffice to compute

all block sizes up to ±𝜶𝒏 error with high probability
• Take 𝛼 = 𝒏−𝜖: error O 𝑺

• 𝐌 ∗ 𝒔 = 𝑂(𝒏𝟑𝝐) ≤ 𝑶(𝒏𝟏−𝝐) for 𝜖 ≤ 1/4

Connectivity

• Input: n edges of a graph (arbitrarily
partitioned between machines)

• Output: is the graph connected? (or # of
connected components)

• Question: how many rounds does it take?
1. 𝑂 1

2. 𝑂 log𝛼 n

3. 𝑂(n𝛼)

4. 𝑂(2𝛼n)

5. Impossible

Algorithms for Graphs
• Dense graphs vs. sparse graphs

– Dense: 𝑺 ≫ |𝑉|

• Linear sketching: one round

• “Filtering” (Output fits on a single machine) [Karloff,
Suri Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’11;
Lattanzi, Moseley, Suri, Vassilvitskii, SPAA’11; Suri,
Vassilvitskii, WWW’11]

– Sparse: 𝑺 ≪ |𝑉| (or 𝑺 ≪ solution size)

Sparse graph problems appear hard (Big open question:
connectivity in o(log 𝑛) rounds?)

VS.

• Version of Boruvka’s algorithm:
– All vertices assigned to different components
– Repeat 𝑂(log n) times:

• Each component chooses a neighboring component
• All pairs of chosen components get merged

• How to avoid chaining?

• If the graph of components is bipartite and only

one side gets to choose then no chaining

• Randomly assign components to the sides

Algorithm for Connectivity

Algorithm for Connectivity: Setup
Data: n edges of an undirected graph.

Notation:
• 𝜋(𝑣) ≡ unique id of 𝑣
• Γ(𝑆) ≡ set of neighbors of a subset of vertices S.

Labels:
• Algorithm assigns label ℓ(𝑣) to each 𝑣.
• 𝐿𝑣 ≡ set of vertices with label ℓ(𝑣) (invariant: subset

of the connected component containing 𝑣).

Active vertices:
• Some vertices will be called active (exactly one per 𝐿𝑣).

Algorithm for Connectivity

• Mark every vertex as active and let ℓ(𝑣) = 𝜋(𝑣).

• For phases 𝑖 = 1,2, … , 𝑂(log n) do:

– Call each active vertex a leader with probability 1/2.
If v is a leader, mark all vertices in 𝐿𝑣 as leaders.

– For every active non-leader vertex w, find the
smallest leader (by 𝜋) vertex w⋆ in Γ(𝐿𝑤).

– Mark w passive, relabel each vertex with label w by w⋆.

• Output: set of connected components based on ℓ.

Algorithm for Connectivity: Analysis

• If ℓ(𝑢) = ℓ(𝑣) then 𝑢 and 𝑣 are in the same CC.

• Claim: Whp unique labels in CC in 𝑂(log𝑁) phases

• # active vertices reduces by a constant factor:

– Half of the active vertices declared as non-leaders.

– Fix an active non-leader vertex 𝒗.

– If at least two different labels in the CC of v then there is
an edge (𝒗′, 𝒖) such that ℓ(𝒗) = ℓ(𝒗′) and ℓ(𝒗′) ≠ ℓ(𝒖).

– 𝒖 marked as a leader with probability 1/2 ⇒ half of the
active non-leader vertices will change their label.

– Overall, expect 1/4 of labels to disappear.

Algorithm for Connectivity:
Implementation Details

• Distributed data structure of size 𝑂 𝑉 to maintain
labels, ids, leader/non-leader status, etc.
– O(1) rounds per stage to update the data structure

• Edges stored locally with all auxiliary info
– Between stages: use distributed data structure to update

local info on edges

• For every active non-leader vertex w, find the
smallest leader (w.r.t 𝜋) vertex w⋆ ∈ Γ(𝐿𝑤)
– Each (non-leader, leader) edge sends an update to the

distributed data structure

• Much faster with Distributed Hash Table Service (DHT)
[Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii’14+

MPC and Computation Complexity

• Class 𝑀𝑅𝐶𝑖 = solvable in 𝑂(log𝑖 𝑛) rounds of MPC
• MRC = ∪𝑖 𝑀𝑅𝐶

𝑖 where union is over all constant 𝑖
• [Karloff, Suri, Vassilvitskii SODA’10+

– If 𝑃 ⊊ 𝑁𝐶 then deterministic 𝑀𝑅𝐶 ⊊ 𝑁𝐶
– Can simulate t-time CRCW PRAM algorithm in 𝑂 𝑡 rounds

• [Jacob, Lieber, Sitchinnava, MFCS’14+
– Only known unconditional LB: Ω log 𝑛 for Guided Interval Fusion

• [Fish, Kun, Lelkes, Reyzin, Turan DISC’15+
– Can recognize regular languages in O(1) rounds
– Some (conditional) hierarchy theorems for MPC

• [Roughgarden, Vassilvitskii, Wang SPAA’16+
– Show Ω(log 𝑆𝑛) lower bounds using degree bound
– Certain type of Ω 1 -round MPC lower bounds implies 𝑃 ⊊ 𝑁𝐶1

MPC for Specific Problems

• Combinatorial Optimization
– Matchings

• Large constant approx. in 𝑂(log log2 𝑛) rounds *“6
Poles”+

• Small constant approximation in 𝑂 log 𝑛 rounds

– Submodular Maximization *BENW, STOC’16+

– (1 + 𝜖)-approx. Euclidean Bichromatic Matching
Size in O(1) rounds for constant dimension
[ANOY’14, STOC’14+

– (1 + 𝜖)-approx. Euclidean MST in O(1) rounds for
constant dimension [ANOY’14, STOC’14]

MPC for Specific Problems

• Clustering

– K-means: *BMVKV, VLDB’12+*BEL, NIPS’13+

– K-center, K-median: [EIM, KDD’11+

– Correlation Clustering: *CDK, KDD’14+

– Single-Linkage Clustering: [Vadapalli, Y ‘17+

• See my talk at Facebook for details on clustering

MPC for Specific Problems

• Dynamic Programming

– [Im, Moseley, Sun STOC’17+:

• Optimal Binary Search Tree

• Weighted Interval Selection

• Longest Increasing Subsequence

– Active area of research right now

• Other problems

– Triangle Counting

– …

Thanks! Questions?

• Slides will be available on http://grigory.us

• More about algorithms for massive data:

http://grigory.us/blog/

• More in the classes I teach:

http://grigory.us/
http://grigory.us/blog/

Example: Single Linkage Clustering
• *Zahn’71+ Clustering via Minimum Spanning Tree:

k clusters: remove 𝒌 − 𝟏 longest edges from MST

• Maximizes minimum intercluster distance

[Kleinberg, Tardos]

Large geometric graphs
• Graph algorithms: Dense graphs vs. sparse graphs

– Dense: 𝑺 ≫ |𝑉|.

– Sparse: 𝑺 ≪ |𝑉|.

• Our setting:
– Dense graphs, sparsely represented: O(n) space

– Output doesn’t fit on one machine (𝑺 ≪ 𝒏)

• Today: (1 + 𝜖)-approximate MST [Andoni, Onak, Nikolov, Y.]
– 𝒅 = 2 (easy to generalize)

– 𝑹 = log𝑺 𝒏= O(1) rounds (𝑺 = 𝒏𝛀(𝟏))

𝑂(log 𝑛)-MST in 𝑅 = 𝑂(log 𝑛) rounds

• Assume points have integer coordinates 0,… , Δ , where
Δ = 𝑂 𝒏𝟐 .

Impose an 𝑂(log 𝒏)-depth quadtree
Bottom-up: For each cell in the quadtree

– compute optimum MSTs in subcells
– Use only one representative from each cell on the next level

Wrong representative:
O(1)-approximation per level

Wrong representative:
O(1)-approximation per level

𝝐𝑳-nets
• 𝝐𝑳-net for a cell C with side length 𝑳:

Collection S of vertices in C, every vertex is at distance <= 𝝐𝑳 from some
vertex in S. (Fact: Can efficiently compute 𝝐-net of size 𝑂

1

𝝐2
)

 Bottom-up: For each cell in the quadtree
– Compute optimum MSTs in subcells
– Use 𝝐𝑳-net from each cell on the next level

• Idea: Pay only O(𝝐𝑳) for an edge cut by cell with side 𝑳
• Randomly shift the quadtree:
Pr 𝑐𝑢𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡𝑕 ℓ 𝑏𝑦 𝑳 ∼ ℓ/𝑳 – charge errors

𝑳 𝑳 𝜖𝑳

Randomly shifted quadtree
• Top cell shifted by a random vector in 0, 𝑳 2

Impose a randomly shifted quadtree (top cell length 𝟐𝚫)

 Bottom-up: For each cell in the quadtree

– Compute optimum MSTs in subcells

– Use 𝝐𝑳-net from each cell on the next level

Pay 5 instead of 4
Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝛀(1)

2

1

𝐁𝐚𝐝 𝐂𝐮𝐭

1 + 𝝐 -MST in 𝐑 = 𝑂(log 𝑛) rounds
• Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length
𝟐𝚫

𝝐
)

 Bottom-up: For each node (cell) in the quadtree

– compute optimum Minimum Spanning Forests in subcells,
using edges of length ≤ 𝝐𝑳

– Use only 𝝐𝟐𝑳-net from each cell on the next level

Sketch of analysis (𝑻∗ = optimum MST):
𝔼[Extra cost] =
𝔼, Pr 𝒆 𝑖𝑠 𝑐𝑢𝑡 𝑏𝑦 𝑐𝑒𝑙𝑙 𝑤𝑖𝑡𝑕 𝑠𝑖𝑑𝑒 𝑳 ⋅ 𝝐𝑳𝒆∈𝑻∗ -

≤ 𝝐 log 𝒏 𝑑 𝒆

𝒆∈𝑻∗

=

𝝐 log 𝒏 ⋅ 𝑐𝑜𝑠𝑡(𝑻∗)

2

1

Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝑶(𝝐)

𝑳 = 𝛀(
𝟏

𝝐
)

1 + 𝝐 -MST in 𝐑 = 𝑂(1) rounds

• 𝑂(log 𝒏) rounds => O(log𝑺 𝒏) = O(1) rounds

– Flatten the tree: (𝑴× 𝑴)-grids instead of (2x2) grids at
each level.

Impose a randomly shifted (𝑴× 𝑴)-tree

 Bottom-up: For each node (cell) in the tree

– compute optimum MSTs in subcells via edges of length ≤ 𝝐𝑳

– Use only 𝝐𝟐𝑳-net from each cell on the next level

⇒ + 𝑴 = 𝒏Ω(1)

1 + 𝝐 -MST in 𝐑 = 𝑂(1) rounds

Theorem: Let 𝒍 = # levels in a random tree P
𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓

Proof (sketch):
• 𝚫𝑷(𝑢, 𝑣) = cell length, which first partitions (𝑢, 𝑣)

• New weights: 𝒘𝑷 𝑢, 𝑣 = 𝑢 − 𝑣
2
+ 𝝐𝚫𝑷 𝑢, 𝑣

𝑢 − 𝑣

2
≤ 𝔼𝑷,𝒘𝑷 𝑢, 𝑣 - ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢 − 𝑣

2

• Our algorithm implements Kruskal for weights 𝒘𝑷

𝑢 𝑣

𝚫𝑷 𝑢, 𝑣

Technical Details

(1 + 𝜖)-MST:

– “Load balancing”: partition the tree into parts of the
same size

– Almost linear time locally: Approximate Nearest
Neighbor data structure *Indyk’99+

– Dependence on dimension d (size of 𝝐-net is 𝑂
𝒅

𝝐

𝒅
)

– Generalizes to bounded doubling dimension

Problem 2: Correlation Clustering

• Inspired by machine learning at

• Practice: *Cohen, McCallum ‘01, Cohen, Richman ’02+

• Theory: [Blum, Bansal, Chawla ’04]

Correlation Clustering: Example

• Minimize # of incorrectly classified pairs:

Covered non-edges + # Non-covered edges

4 incorrectly classified =
1 covered non-edge +
3 non-covered edges

Approximating Correlation Clustering

• Minimize # of incorrectly classified pairs

– ≈ 20000-approximation *Blum, Bansal, Chawla’04]

– [Demaine, Emmanuel, Fiat, Immorlica’04+,*Charikar,
Guruswami, Wirth’05], [Ailon, Charikar, Newman’05+
[Williamson, van Zuylen’07+, *Ailon, Liberty’08+,…

– ≈ 2-approximation [Chawla, Makarychev, Schramm,
Y. ’15+

• Maximize # of correctly classified pairs

– (1 − 𝜖)-approximation *Blum, Bansal, Chawla’04+

Correlation Clustering

One of the most successful clustering methods:

• Only uses qualitative information about
similarities

• # of clusters unspecified (selected to best fit
data)

• Applications: document/image deduplication
(data from crowds or black-box machine
learning)

• NP-hard [Bansal, Blum, Chawla ‘04+, admits
simple approximation algorithms with good
provable guarantees

Correlation Clustering

More:

• Survey [Wirth]

• KDD’14 tutorial: “Correlation Clustering: From
Theory to Practice” [Bonchi, Garcia-Soriano,
Liberty]
http://francescobonchi.com/CCtuto_kdd14.pdf

• Wikipedia article:
http://en.wikipedia.org/wiki/Correlation_cluster
ing

http://francescobonchi.com/CCtuto_kdd14.pdf
http://en.wikipedia.org/wiki/Correlation_clustering
http://en.wikipedia.org/wiki/Correlation_clustering

Data-Based Randomized Pivoting

3-approximation (expected) [Ailon, Charikar,
Newman]

Algorithm:

• Pick a random pivot vertex 𝒗

• Make a cluster 𝒗 ∪ 𝑁(𝒗), where 𝑁 𝒗 is the set
of neighbors of 𝒗

• Remove the cluster from the graph and repeat

Data-Based Randomized Pivoting

• Pick a random pivot vertex 𝒑

• Make a cluster 𝒑 ∪ 𝑁(𝒑), where 𝑁 𝒑 is the set
of neighbors of 𝒑

• Remove the cluster from the graph and repeat

 8 incorrectly classified =
2 covered non-edges +
6 non-covered edges

Parallel Pivot Algorithm

• (3 + 𝝐)-approx. in 𝑂(log2 𝑛 / 𝜖) rounds
[Chierichetti, Dalvi, Kumar, KDD’14+

• Algorithm: while the graph is not empty

– 𝑫 = current maximum degree

– Activate each node independently with prob. 𝝐/𝑫

– Deactivate nodes connected to other active nodes

– The remaining nodes are pivots

– Create cluster around each pivot as before

– Remove the clusters

Parallel Pivot Algorithm: Analysis

• Fact: Halves max degree after
1

𝝐
log 𝒏 rounds

 ⇒ terminates in O
log2 𝒏

𝝐
 rounds

• Fact: Activation process induces close to uniform
marginal distribution of the pivots

⇒ analysis similar to regular pivot gives (3 + 𝝐)-
approximation

Part 2: Clustering Vectors

• Input: 𝑣1, … , 𝑣𝒏 ∈ ℝ
𝒅

– Feature vectors in ML, word embedings in NLP, etc.

– (Implicit) weighted graph of pairwise distances

• Applications:

– Same as before + Data visualization

⇒

Problem 3: K-means

• Input: 𝑣1, … , 𝑣𝒏 ∈ ℝ
𝒅

• Find 𝒌 centers 𝑐1, … , 𝑐𝒌

• Minimize sum of squared
distance to the closest center:

 min𝑗=1
𝑘 ||𝑣𝑖 − 𝑐𝑗||2

2

𝑛

𝑖=1

• ||𝑣𝑖 − 𝑐𝑗||2
2 = 𝑣𝑖𝑡 − 𝑐𝑗𝑡

2𝒅
𝑡=1

• NP-hard

K-means++ *Arthur,Vassilvitskii’07+

• 𝐶 = *𝑐1, … , 𝑐𝑡+ (collection of centers)

• 𝑑2 𝑣, 𝐶 = min𝑗=1
𝑘 ||𝑣 − 𝑐𝑗||2

2

K-means++ algorithm (gives 𝑂 log𝒌 -approximation):

• Pick 𝑐1 uniformly at random from the data

• Pick centers 𝑐2… , 𝑐𝒌 sequentially from the
distribution where point 𝑣 has probability

𝑑2 𝑣, 𝐶

 𝑑2(𝑣𝑖 , 𝐶)
𝑛
𝑖=1

K-means|| [Bahmani et al. ‘12+
• Pick 𝐶 = 𝑐1 uniformly at random from data

• Initial cost: 𝜓 = 𝑑2(𝑣𝑖 , 𝑐1)
𝑛
𝑖=1

• Do 𝑂(log𝜓) times:

– Add 𝑂 𝒌 centers from the distribution where point 𝑣
has probability

𝑑2 𝑣, 𝐶

 𝑑2(𝑣𝑖 , 𝐶)
𝑛
𝑖=1

• Solve k-means for these O(𝒌 log𝜓) points locally

• Thm. If final step gives 𝜶-approximation
⇒ 𝑂(𝜶)-approximation overall

Problem 4: Single Linkage Clustering

• *Zahn’71+ Clustering via Minimum Spanning Tree:

k clusters: remove 𝒌 − 𝟏 longest edges from MST

• Maximizes minimum intercluster distance

[Kleinberg, Tardos]

Large geometric graphs
• Graph algorithms: Dense graphs vs. sparse graphs

– Dense: 𝑺 ≫ |𝑉|.

– Sparse: 𝑺 ≪ |𝑉|.

• Our setting:
– Dense graphs, sparsely represented: O(n) space

– Output doesn’t fit on one machine (𝑺 ≪ 𝒏)

• Today: (1 + 𝜖)-approximate MST [Andoni, Onak, Nikolov, Y.]
– 𝒅 = 2 (easy to generalize)

– 𝑹 = log𝑺 𝒏= O(1) rounds (𝑺 = 𝒏𝛀(𝟏))

𝑂(log 𝑛)-MST in 𝑅 = 𝑂(log 𝑛) rounds

• Assume points have integer coordinates 0,… , Δ , where
Δ = 𝑂 𝒏𝟐 .

Impose an 𝑂(log 𝒏)-depth quadtree
Bottom-up: For each cell in the quadtree

– compute optimum MSTs in subcells
– Use only one representative from each cell on the next level

Wrong representative:
O(1)-approximation per level

Wrong representative:
O(1)-approximation per level

𝝐𝑳-nets
• 𝝐𝑳-net for a cell C with side length 𝑳:

Collection S of vertices in C, every vertex is at distance <= 𝝐𝑳 from some
vertex in S. (Fact: Can efficiently compute 𝝐-net of size 𝑂

1

𝝐2
)

 Bottom-up: For each cell in the quadtree
– Compute optimum MSTs in subcells
– Use 𝝐𝑳-net from each cell on the next level

• Idea: Pay only O(𝝐𝑳) for an edge cut by cell with side 𝑳
• Randomly shift the quadtree:
Pr 𝑐𝑢𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡𝑕 ℓ 𝑏𝑦 𝑳 ∼ ℓ/𝑳 – charge errors

𝑳 𝑳 𝜖𝑳

Randomly shifted quadtree
• Top cell shifted by a random vector in 0, 𝑳 2

Impose a randomly shifted quadtree (top cell length 𝟐𝚫)

 Bottom-up: For each cell in the quadtree

– Compute optimum MSTs in subcells

– Use 𝝐𝑳-net from each cell on the next level

Pay 5 instead of 4
Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝛀(1)

2

1

𝐁𝐚𝐝 𝐂𝐮𝐭

1 + 𝝐 -MST in 𝐑 = 𝑂(log 𝑛) rounds
• Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length
𝟐𝚫

𝝐
)

 Bottom-up: For each node (cell) in the quadtree

– compute optimum Minimum Spanning Forests in subcells,
using edges of length ≤ 𝝐𝑳

– Use only 𝝐𝟐𝑳-net from each cell on the next level

Sketch of analysis (𝑻∗ = optimum MST):
𝔼[Extra cost] =
𝔼, Pr 𝒆 𝑖𝑠 𝑐𝑢𝑡 𝑏𝑦 𝑐𝑒𝑙𝑙 𝑤𝑖𝑡𝑕 𝑠𝑖𝑑𝑒 𝑳 ⋅ 𝝐𝑳𝒆∈𝑻∗ -

≤ 𝝐 log 𝒏 𝑑 𝒆

𝒆∈𝑻∗

=

𝝐 log 𝒏 ⋅ 𝑐𝑜𝑠𝑡(𝑻∗)

2

1

Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝑶(𝝐)

𝑳 = 𝛀(
𝟏

𝝐
)

1 + 𝝐 -MST in 𝐑 = 𝑂(1) rounds

• 𝑂(log 𝒏) rounds => O(log𝑺 𝒏) = O(1) rounds

– Flatten the tree: (𝑴× 𝑴)-grids instead of (2x2) grids at
each level.

Impose a randomly shifted (𝑴× 𝑴)-tree

 Bottom-up: For each node (cell) in the tree

– compute optimum MSTs in subcells via edges of length ≤ 𝝐𝑳

– Use only 𝝐𝟐𝑳-net from each cell on the next level

⇒ + 𝑴 = 𝒏Ω(1)

1 + 𝝐 -MST in 𝐑 = 𝑂(1) rounds

Theorem: Let 𝒍 = # levels in a random tree P
𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓

Proof (sketch):
• 𝚫𝑷(𝑢, 𝑣) = cell length, which first partitions (𝑢, 𝑣)

• New weights: 𝒘𝑷 𝑢, 𝑣 = 𝑢 − 𝑣
2
+ 𝝐𝚫𝑷 𝑢, 𝑣

𝑢 − 𝑣

2
≤ 𝔼𝑷,𝒘𝑷 𝑢, 𝑣 - ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢 − 𝑣

2

• Our algorithm implements Kruskal for weights 𝒘𝑷

𝑢 𝑣

𝚫𝑷 𝑢, 𝑣

Technical Details

(1 + 𝜖)-MST:

– “Load balancing”: partition the tree into parts of the
same size

– Almost linear time locally: Approximate Nearest
Neighbor data structure *Indyk’99+

– Dependence on dimension d (size of 𝝐-net is 𝑂
𝒅

𝝐

𝒅
)

– Generalizes to bounded doubling dimension

