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Cluster Computation (a la BSP) 
• Input: size n (e.g. n = billions of edges in a graph) 
• 𝑴 Machines, 𝑺 Space (RAM) each  

– Constant overhead in RAM: 𝑴 ⋅ 𝑺 =  𝑂(𝒏) 
– 𝑺 = 𝒏1−𝜖 , e.g. 𝜖 = 0.1 or 𝜖 = 0.5 (𝑴 = 𝑺 = 𝑂( 𝒏)) 

• Output: solution to a problem (often size O(𝒏)) 
– Doesn’t fit in local RAM (𝑺 ≪ 𝒏) 

 

 
 

+ 𝑴 machines + 
S space 

𝐈𝐧𝐩𝐮𝐭: size 𝒏  ⇒ ⇒ 𝐎𝐮𝐭𝐩𝐮𝐭 



+ 𝑴 machines + 
S space 

Cluster Computation (a la BSP) 
• Computation/Communication in 𝑹 rounds: 

– Every machine performs a near-linear time 
computation => Total user time 𝑂(𝑺𝟏+𝒐(𝟏)𝑹) 

– Every machine receives at most 𝑺 bits of information => 
Total communication 𝑂(𝒏𝑹). 

 
Goal: Minimize 𝑹.                        Ideally: 𝑹 = constant. 

 

𝑶(𝑺𝟏+𝒐(𝟏)) time 

≤ 𝑺 bits 



MapReduce-style computations 

 
What I won’t discuss today 
• PRAMs (shared memory, multiple processors) (see 

e.g. [Karloff, Suri, Vassilvitskii‘10+) 
– Computing XOR requires Ω (log 𝑛) rounds in CRCW PRAM 
– Can be done in 𝑂(log𝒔 𝑛) rounds of MapReduce 

• Pregel-style systems, Distributed Hash Tables (see 
e.g. Ashish Goel’s class notes and papers) 

• Lower-level implementation details (see e.g. 
Rajaraman-Leskovec-Ullman book) 

 



Models of parallel computation 
• Bulk-Synchronous Parallel Model (BSP) [Valiant,90]  

Pro: Most general, generalizes all other models 

Con: Many parameters, hard to design algorithms 

• Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-

Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10, Goodrich-Sitchinava-Zhang’11, 
Beame, Koutris, Suciu’13, Andoni, Onak, Nikolov, Y.’14] 

Pros:  

• Inspired by modern systems (MapReduce, Dryad, Spark, Giraph, …) 

• Few parameters, simple to design algorithms 

• New algorithmic ideas, robust to the exact model specification 

• # Rounds is an information-theoretic measure => can prove 
unconditional results 

Con: sometimes not enough to model more complex behavior 

 



• Cloud computing platforms (all offer free trials): 

– Amazon EC2 (1 CPU/12mo) 

– Microsoft Azure ($200/1mo) 

– Google Compute Engine ($200/2mo) 

• Distributed Google Code Jam 

– First time in 2015: 
https://code.google.com/codejam/distributed_index.html  

– Caveats:  

• Very basic aspects of distributed algorithms (few rounds) 

• Small data (~1 𝐺𝐵, with hundreds MB RAM) 

• Fast query access (~0.01 𝑚𝑠 per request), “data with queries”   

Getting hands dirty 

https://code.google.com/codejam/distributed_index.html


Business perspective 

• Pricings: 

– https://cloud.google.com/pricing/ 

– https://aws.amazon.com/pricing/ 

• ~Linear with space and time usage 

– 100 machines: 5K $/year  

– 10000 machines: 0.5M $/year 

• You pay a lot more for using provided 
algorithms 

– https://aws.amazon.com/machine-
learning/pricing/ 

 

https://cloud.google.com/pricing/
https://aws.amazon.com/pricing/
https://aws.amazon.com/machine-learning/pricing/
https://aws.amazon.com/machine-learning/pricing/
https://aws.amazon.com/machine-learning/pricing/


Sorting: Terasort 

• Sort Benchmark: http://sortbenchmark.org/ 
• Sorting 𝒏 keys on 𝑴 = 𝑶(𝒏𝝐) machines 

– Would like to partition keys uniformly into blocks: first 𝒏/𝑴, 
second 𝒏/𝑴, etc. 

– Sort the keys locally on each machine 

• Build an approximate histogram: 
– Each machine takes a sample of size 𝒔 
– All 𝑴 ∗ 𝒔 ≤ 𝑺 = 𝒏𝟏−𝝐 samples are sorted locally 
– Blocks are computed based on the samples 

• By Chernoff: 𝐌 ∗ 𝒔 = 𝑂
𝑙𝑜𝑔 𝒏

𝜶𝟐
  samples suffice to compute 

all block sizes up to ±𝜶𝒏 error with high probability 
• Take 𝛼 = 𝒏−𝜖: error O 𝑺  

• 𝐌 ∗ 𝒔 = 𝑂( 𝒏𝟑𝝐) ≤ 𝑶(𝒏𝟏−𝝐) for 𝜖 ≤ 1/4  
 



Connectivity 

• Input: n edges of a graph (arbitrarily 
partitioned between machines) 

• Output: is the graph connected? (or # of 
connected components) 

• Question: how many rounds does it take? 
1.  𝑂 1  

2.  𝑂 log𝛼 n  

3.  𝑂(n𝛼) 

4.  𝑂(2𝛼n) 

5.  Impossible 

 



Algorithms for Graphs 
• Dense graphs vs. sparse graphs 

– Dense: 𝑺 ≫ |𝑉| 

• Linear sketching: one round 

• “Filtering” (Output fits on a single machine) [Karloff, 
Suri Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’11; 
Lattanzi, Moseley, Suri, Vassilvitskii, SPAA’11; Suri, 
Vassilvitskii, WWW’11] 

– Sparse: 𝑺 ≪ |𝑉| (or 𝑺 ≪ solution size) 

Sparse graph problems appear hard (Big open question: 
connectivity in o(log 𝑛) rounds?) 

 
VS. 



• Version of Boruvka’s algorithm: 
– All vertices assigned to different components 
– Repeat 𝑂(log n) times: 

• Each component chooses a neighboring component 
• All pairs of chosen components get merged 

• How to avoid chaining? 
 
• If the graph of components is bipartite and only 

one side gets to choose then no chaining 
 
 

• Randomly assign components to the sides 
 

Algorithm for Connectivity 



Algorithm for Connectivity: Setup 
Data: n edges of an undirected graph.  
 
Notation: 
• 𝜋(𝑣) ≡ unique id of 𝑣 
• Γ(𝑆) ≡ set of neighbors of a subset of vertices S. 
 
Labels: 
• Algorithm assigns label ℓ(𝑣) to each 𝑣.  
• 𝐿𝑣  ≡ set of vertices with label ℓ(𝑣) (invariant: subset 

of the connected component containing 𝑣).  
 
Active vertices: 
• Some vertices will be called active (exactly one per 𝐿𝑣). 



Algorithm for Connectivity 

• Mark every vertex as active and let ℓ(𝑣) = 𝜋(𝑣). 

• For phases 𝑖 = 1,2, … , 𝑂(log n) do: 

– Call each active vertex a leader with probability 1/2. 
If v is a leader, mark all vertices in 𝐿𝑣 as leaders. 

– For every active non-leader vertex w, find the 
smallest leader (by 𝜋) vertex w⋆ in Γ(𝐿𝑤). 

– Mark w passive, relabel each vertex with label w by  w⋆. 

• Output: set of connected components based on  ℓ. 

 



Algorithm for Connectivity: Analysis 

• If ℓ(𝑢) = ℓ(𝑣) then 𝑢 and 𝑣 are in the same CC. 

• Claim: Whp unique labels in CC in 𝑂(log𝑁) phases 

• # active vertices reduces by a constant factor: 

– Half of the active vertices declared as non-leaders.  

– Fix an active non-leader vertex 𝒗.  

– If at least two different labels in the CC of v then there is 
an edge (𝒗′, 𝒖) such that ℓ(𝒗) = ℓ(𝒗′) and ℓ(𝒗′) ≠ ℓ(𝒖).  

– 𝒖 marked as a leader with probability 1/2 ⇒ half of the 
active non-leader vertices will change their label.  

– Overall, expect 1/4 of labels to disappear.  



Algorithm for Connectivity: 
Implementation Details 

• Distributed data structure  of size 𝑂 𝑉  to maintain 
labels, ids, leader/non-leader status, etc. 
– O(1) rounds per stage to update the data structure 

• Edges stored locally with all auxiliary info 
– Between stages: use distributed data structure to update 

local info on edges 

• For every active non-leader vertex w, find the 
smallest leader (w.r.t 𝜋) vertex w⋆ ∈ Γ(𝐿𝑤) 
– Each (non-leader, leader) edge sends an update to the 

distributed data structure 

• Much faster with Distributed Hash Table Service (DHT) 
[Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii’14+ 



MPC and Computation Complexity 

• Class 𝑀𝑅𝐶𝑖  = solvable in 𝑂(log𝑖 𝑛) rounds of MPC 
• MRC = ∪𝑖 𝑀𝑅𝐶

𝑖 where union is over all constant 𝑖 
• [Karloff, Suri, Vassilvitskii SODA’10+ 

– If 𝑃 ⊊ 𝑁𝐶  then deterministic  𝑀𝑅𝐶 ⊊ 𝑁𝐶 
– Can simulate t-time CRCW PRAM algorithm in 𝑂 𝑡  rounds 

• [Jacob, Lieber, Sitchinnava, MFCS’14+ 
– Only known unconditional LB: Ω log  𝑛  for Guided Interval Fusion  

• [Fish, Kun, Lelkes, Reyzin, Turan DISC’15+ 
– Can recognize regular languages in O(1) rounds 
– Some (conditional) hierarchy theorems for MPC 

• [Roughgarden, Vassilvitskii, Wang SPAA’16+ 
– Show Ω(log 𝑆𝑛) lower bounds using degree bound 
– Certain type of Ω 1 -round MPC lower bounds implies 𝑃 ⊊ 𝑁𝐶1   

   



MPC for Specific Problems 

• Combinatorial Optimization 
– Matchings 

• Large constant approx. in 𝑂(log log2 𝑛) rounds *“6 
Poles”+ 

• Small constant approximation in 𝑂 log 𝑛  rounds 

– Submodular Maximization *BENW, STOC’16+ 

– (1 + 𝜖)-approx. Euclidean Bichromatic Matching 
Size in O(1) rounds for constant dimension 
[ANOY’14, STOC’14+ 

– (1 + 𝜖)-approx. Euclidean MST in O(1) rounds for 
constant dimension [ANOY’14, STOC’14] 



MPC for Specific Problems 

• Clustering  

– K-means: *BMVKV, VLDB’12+*BEL, NIPS’13+ 

– K-center, K-median: [EIM, KDD’11+ 

– Correlation Clustering: *CDK, KDD’14+ 

– Single-Linkage Clustering: [Vadapalli, Y ‘17+ 

• See my talk at Facebook for details on clustering 

 



MPC for Specific Problems 

• Dynamic Programming 

– [Im, Moseley, Sun STOC’17+: 

• Optimal Binary Search Tree 

• Weighted Interval Selection 

• Longest Increasing Subsequence 

– Active area of research right now 

• Other problems 

– Triangle Counting 

– … 



Thanks! Questions? 

• Slides will be available on http://grigory.us 

• More about algorithms for massive data: 

http://grigory.us/blog/ 

• More in the classes I teach: 

http://grigory.us/
http://grigory.us/blog/


Example: Single Linkage Clustering 
• *Zahn’71+ Clustering via Minimum Spanning Tree:  

k clusters: remove 𝒌 − 𝟏 longest edges from MST 

• Maximizes minimum intercluster distance 

[Kleinberg, Tardos] 



Large geometric graphs 
• Graph algorithms: Dense graphs vs. sparse graphs 

– Dense: 𝑺 ≫ |𝑉|.  

– Sparse: 𝑺 ≪ |𝑉|.  

 

• Our setting: 
– Dense graphs, sparsely represented: O(n) space 

– Output doesn’t fit on one machine (𝑺 ≪  𝒏) 

• Today: (1 + 𝜖)-approximate MST [Andoni, Onak, Nikolov, Y.] 
– 𝒅 = 2  (easy to generalize)  

– 𝑹 = log𝑺 𝒏= O(1) rounds (𝑺 = 𝒏𝛀(𝟏)) 

 



𝑂(log 𝑛)-MST in 𝑅 = 𝑂(log 𝑛)  rounds  

• Assume points have integer coordinates 0,… , Δ , where 
Δ = 𝑂 𝒏𝟐  . 

 
Impose an 𝑂(log 𝒏)-depth quadtree  
Bottom-up: For each cell in the quadtree  

– compute optimum MSTs in subcells 
– Use only one representative from each cell on the next level 
  

Wrong representative:  
O(1)-approximation per level 



Wrong representative:  
O(1)-approximation per level 

𝝐𝑳-nets 
• 𝝐𝑳-net for a cell C with side length 𝑳: 

Collection S of vertices in C, every vertex is at distance <= 𝝐𝑳 from some 
vertex in S. (Fact: Can efficiently compute 𝝐-net of size 𝑂

1

𝝐2
) 

      

      Bottom-up: For each cell in the quadtree  
– Compute optimum MSTs in subcells 
– Use 𝝐𝑳-net from each cell on the next level 

 

• Idea: Pay only O(𝝐𝑳) for an edge cut by cell with side 𝑳 
• Randomly shift the quadtree: 
Pr 𝑐𝑢𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡𝑕 ℓ 𝑏𝑦 𝑳 ∼ ℓ/𝑳 – charge errors 

𝑳 𝑳 𝜖𝑳 



Randomly shifted quadtree 
• Top cell shifted by a random vector in 0, 𝑳 2 

Impose a randomly shifted quadtree (top cell length 𝟐𝚫) 

      Bottom-up: For each cell in the quadtree  

– Compute optimum MSTs in subcells 

– Use 𝝐𝑳-net from each cell on the next level 

 

 

 

 

 

Pay 5 instead of 4 
Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝛀(1) 

2 
 

1 
 

𝐁𝐚𝐝 𝐂𝐮𝐭 



1 + 𝝐 -MST in 𝐑 = 𝑂(log  𝑛)  rounds  
• Idea: Only use short edges inside the cells 

Impose a randomly shifted quadtree (top cell length 
𝟐𝚫

𝝐 
 ) 

      Bottom-up: For each node (cell) in the quadtree  

– compute optimum Minimum Spanning Forests in subcells, 
using edges of length ≤ 𝝐𝑳 

– Use only 𝝐𝟐𝑳-net from each cell on the next level 

 

 

 

 

 

Sketch of analysis (𝑻∗ = optimum MST): 
𝔼[Extra cost] = 
𝔼, Pr 𝒆 𝑖𝑠 𝑐𝑢𝑡 𝑏𝑦 𝑐𝑒𝑙𝑙 𝑤𝑖𝑡𝑕 𝑠𝑖𝑑𝑒 𝑳 ⋅  𝝐𝑳𝒆∈𝑻∗  - 

≤ 𝝐 log 𝒏 𝑑 𝒆

𝒆∈𝑻∗

= 

𝝐 log 𝒏 ⋅ 𝑐𝑜𝑠𝑡(𝑻∗) 
 

2 
 

1 
 

Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝑶(𝝐) 
 

𝑳 = 𝛀(
𝟏

𝝐
)  



1 + 𝝐 -MST in 𝐑 = 𝑂(1)  rounds  

• 𝑂(log 𝒏) rounds => O(log𝑺 𝒏) = O(1) rounds 

– Flatten the tree: ( 𝑴× 𝑴)-grids instead of (2x2) grids at 
each level. 

 

 

 

 

Impose a randomly shifted ( 𝑴× 𝑴)-tree 

      Bottom-up: For each node (cell) in the tree  

– compute optimum MSTs in subcells via edges of length ≤ 𝝐𝑳 

– Use only 𝝐𝟐𝑳-net from each cell on the next level 

 

⇒ + 𝑴 = 𝒏Ω(1) 
 



1 + 𝝐 -MST in 𝐑 = 𝑂(1)  rounds  

Theorem: Let 𝒍 = # levels in a random tree P 
𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓  

Proof (sketch):  
• 𝚫𝑷(𝑢, 𝑣) = cell length, which first partitions (𝑢, 𝑣) 

• New weights: 𝒘𝑷 𝑢, 𝑣 = 𝑢 − 𝑣
2
+ 𝝐𝚫𝑷 𝑢, 𝑣  

 
𝑢 − 𝑣

2
≤ 𝔼𝑷,𝒘𝑷 𝑢, 𝑣 - ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢 − 𝑣

2
 

 
• Our algorithm implements Kruskal for weights 𝒘𝑷 

𝑢 𝑣 

𝚫𝑷 𝑢, 𝑣  



Technical Details 

(1 + 𝜖)-MST: 

– “Load balancing”: partition the tree into parts of the 
same size 

– Almost linear time locally: Approximate Nearest 
Neighbor data structure *Indyk’99+ 

– Dependence on dimension d (size of 𝝐-net is 𝑂
𝒅

𝝐

𝒅
) 

– Generalizes to bounded doubling dimension 

 
 

 



Problem 2: Correlation Clustering 

• Inspired by machine learning at 

• Practice: *Cohen, McCallum ‘01, Cohen, Richman ’02+ 

• Theory: [Blum, Bansal, Chawla ’04] 



Correlation Clustering: Example 

• Minimize # of incorrectly classified pairs: 

# Covered non-edges + # Non-covered edges 

 

 

 

 

 

 

4 incorrectly classified = 
1 covered non-edge + 
3 non-covered edges 



Approximating Correlation Clustering 

• Minimize # of incorrectly classified pairs 

– ≈ 20000-approximation *Blum, Bansal, Chawla’04] 

– [Demaine, Emmanuel, Fiat, Immorlica’04+,*Charikar, 
Guruswami, Wirth’05], [Ailon, Charikar, Newman’05+ 
[Williamson, van Zuylen’07+, *Ailon, Liberty’08+,… 

– ≈ 2-approximation [Chawla, Makarychev, Schramm, 
Y. ’15+ 

• Maximize # of correctly classified pairs 

– (1 − 𝜖)-approximation *Blum, Bansal, Chawla’04+ 

 



Correlation Clustering 

One of the most successful clustering methods: 

• Only uses qualitative information about 
similarities 

• # of clusters unspecified (selected to best fit 
data) 

• Applications: document/image deduplication 
(data from crowds or black-box machine 
learning) 

• NP-hard [Bansal, Blum, Chawla ‘04+, admits 
simple approximation algorithms with good 
provable guarantees  



Correlation Clustering 

More: 

• Survey [Wirth] 

• KDD’14 tutorial: “Correlation Clustering: From 
Theory to Practice” [Bonchi, Garcia-Soriano, 
Liberty] 
http://francescobonchi.com/CCtuto_kdd14.pdf 

• Wikipedia article: 
http://en.wikipedia.org/wiki/Correlation_cluster
ing 

http://francescobonchi.com/CCtuto_kdd14.pdf
http://en.wikipedia.org/wiki/Correlation_clustering
http://en.wikipedia.org/wiki/Correlation_clustering


Data-Based Randomized Pivoting 

3-approximation (expected) [Ailon, Charikar, 
Newman] 

Algorithm: 

• Pick a random pivot vertex 𝒗 

• Make a cluster 𝒗 ∪ 𝑁(𝒗), where 𝑁 𝒗  is the set 
of neighbors of 𝒗 

• Remove the cluster from the graph and repeat  

 



Data-Based Randomized Pivoting 

• Pick a random pivot vertex 𝒑 

• Make a cluster 𝒑 ∪ 𝑁(𝒑), where 𝑁 𝒑  is the set 
of neighbors of 𝒑 

• Remove the cluster from the graph and repeat  

 

 8 incorrectly classified = 
2 covered non-edges + 
6 non-covered edges 



Parallel Pivot Algorithm 

• (3 + 𝝐)-approx. in 𝑂(log2 𝑛 / 𝜖) rounds 
[Chierichetti, Dalvi, Kumar, KDD’14+ 

• Algorithm: while the graph is not empty 

– 𝑫 = current maximum degree 

– Activate each node independently with prob. 𝝐/𝑫 

– Deactivate nodes connected to other active nodes 

– The remaining nodes are pivots 

– Create cluster around each pivot as before 

– Remove the clusters 



Parallel Pivot Algorithm: Analysis 

• Fact: Halves max degree after 
1

𝝐
log 𝒏 rounds  

 ⇒ terminates in O
log2 𝒏

𝝐
 rounds 

• Fact: Activation process induces close to uniform 
marginal distribution of the pivots   

⇒ analysis similar to regular pivot gives (3 + 𝝐)-
approximation 



Part 2: Clustering Vectors 

• Input: 𝑣1, … , 𝑣𝒏 ∈  ℝ
𝒅 

– Feature vectors in ML, word embedings in NLP, etc. 

– (Implicit) weighted graph of pairwise distances 

• Applications: 

– Same as before + Data visualization 



⇒
 

Problem 3: K-means 

• Input: 𝑣1, … , 𝑣𝒏 ∈  ℝ
𝒅 

• Find 𝒌 centers 𝑐1, … , 𝑐𝒌 

• Minimize sum of squared 
distance to the closest center:  

 min𝑗=1
𝑘 ||𝑣𝑖 − 𝑐𝑗||2

2 

𝑛

𝑖=1

 

• ||𝑣𝑖 − 𝑐𝑗||2
2 =  𝑣𝑖𝑡 − 𝑐𝑗𝑡

2𝒅
𝑡=1  

• NP-hard 



K-means++ *Arthur,Vassilvitskii’07+ 

• 𝐶 = *𝑐1, … , 𝑐𝑡+ (collection of centers) 

• 𝑑2 𝑣, 𝐶 = min𝑗=1
𝑘 ||𝑣 − 𝑐𝑗||2

2  

 

K-means++ algorithm (gives 𝑂 log𝒌 -approximation): 

• Pick 𝑐1 uniformly at random from the data 

• Pick centers 𝑐2… , 𝑐𝒌 sequentially from the 
distribution where point 𝑣 has probability 

𝑑2 𝑣, 𝐶

 𝑑2(𝑣𝑖 , 𝐶)
𝑛
𝑖=1

 



K-means|| [Bahmani et al. ‘12+  
• Pick 𝐶 = 𝑐1 uniformly at random from data 

• Initial cost: 𝜓 =  𝑑2(𝑣𝑖 , 𝑐1)
𝑛
𝑖=1  

• Do 𝑂(log𝜓) times: 

– Add 𝑂 𝒌  centers from the distribution where point 𝑣 
has probability 

𝑑2 𝑣, 𝐶

 𝑑2(𝑣𝑖 , 𝐶)
𝑛
𝑖=1

 

• Solve k-means for these O(𝒌 log𝜓) points locally 

• Thm. If final step gives 𝜶-approximation  
⇒ 𝑂(𝜶)-approximation overall 



Problem 4: Single Linkage Clustering 

• *Zahn’71+ Clustering via Minimum Spanning Tree:  

k clusters: remove 𝒌 − 𝟏 longest edges from MST 

• Maximizes minimum intercluster distance 

[Kleinberg, Tardos] 



Large geometric graphs 
• Graph algorithms: Dense graphs vs. sparse graphs 

– Dense: 𝑺 ≫ |𝑉|.  

– Sparse: 𝑺 ≪ |𝑉|.  

 

• Our setting: 
– Dense graphs, sparsely represented: O(n) space 

– Output doesn’t fit on one machine (𝑺 ≪  𝒏) 

• Today: (1 + 𝜖)-approximate MST [Andoni, Onak, Nikolov, Y.] 
– 𝒅 = 2  (easy to generalize)  

– 𝑹 = log𝑺 𝒏= O(1) rounds (𝑺 = 𝒏𝛀(𝟏)) 

 



𝑂(log 𝑛)-MST in 𝑅 = 𝑂(log 𝑛)  rounds  

• Assume points have integer coordinates 0,… , Δ , where 
Δ = 𝑂 𝒏𝟐  . 

 
Impose an 𝑂(log 𝒏)-depth quadtree  
Bottom-up: For each cell in the quadtree  

– compute optimum MSTs in subcells 
– Use only one representative from each cell on the next level 
  

Wrong representative:  
O(1)-approximation per level 



Wrong representative:  
O(1)-approximation per level 

𝝐𝑳-nets 
• 𝝐𝑳-net for a cell C with side length 𝑳: 

Collection S of vertices in C, every vertex is at distance <= 𝝐𝑳 from some 
vertex in S. (Fact: Can efficiently compute 𝝐-net of size 𝑂

1

𝝐2
) 

      

      Bottom-up: For each cell in the quadtree  
– Compute optimum MSTs in subcells 
– Use 𝝐𝑳-net from each cell on the next level 

 

• Idea: Pay only O(𝝐𝑳) for an edge cut by cell with side 𝑳 
• Randomly shift the quadtree: 
Pr 𝑐𝑢𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡𝑕 ℓ 𝑏𝑦 𝑳 ∼ ℓ/𝑳 – charge errors 

𝑳 𝑳 𝜖𝑳 



Randomly shifted quadtree 
• Top cell shifted by a random vector in 0, 𝑳 2 

Impose a randomly shifted quadtree (top cell length 𝟐𝚫) 

      Bottom-up: For each cell in the quadtree  

– Compute optimum MSTs in subcells 

– Use 𝝐𝑳-net from each cell on the next level 

 

 

 

 

 

Pay 5 instead of 4 
Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝛀(1) 

2 
 

1 
 

𝐁𝐚𝐝 𝐂𝐮𝐭 



1 + 𝝐 -MST in 𝐑 = 𝑂(log  𝑛)  rounds  
• Idea: Only use short edges inside the cells 

Impose a randomly shifted quadtree (top cell length 
𝟐𝚫

𝝐 
 ) 

      Bottom-up: For each node (cell) in the quadtree  

– compute optimum Minimum Spanning Forests in subcells, 
using edges of length ≤ 𝝐𝑳 

– Use only 𝝐𝟐𝑳-net from each cell on the next level 

 

 

 

 

 

Sketch of analysis (𝑻∗ = optimum MST): 
𝔼[Extra cost] = 
𝔼, Pr 𝒆 𝑖𝑠 𝑐𝑢𝑡 𝑏𝑦 𝑐𝑒𝑙𝑙 𝑤𝑖𝑡𝑕 𝑠𝑖𝑑𝑒 𝑳 ⋅  𝝐𝑳𝒆∈𝑻∗  - 

≤ 𝝐 log 𝒏 𝑑 𝒆

𝒆∈𝑻∗

= 

𝝐 log 𝒏 ⋅ 𝑐𝑜𝑠𝑡(𝑻∗) 
 

2 
 

1 
 

Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝑶(𝝐) 
 

𝑳 = 𝛀(
𝟏

𝝐
)  



1 + 𝝐 -MST in 𝐑 = 𝑂(1)  rounds  

• 𝑂(log 𝒏) rounds => O(log𝑺 𝒏) = O(1) rounds 

– Flatten the tree: ( 𝑴× 𝑴)-grids instead of (2x2) grids at 
each level. 

 

 

 

 

Impose a randomly shifted ( 𝑴× 𝑴)-tree 

      Bottom-up: For each node (cell) in the tree  

– compute optimum MSTs in subcells via edges of length ≤ 𝝐𝑳 

– Use only 𝝐𝟐𝑳-net from each cell on the next level 

 

⇒ + 𝑴 = 𝒏Ω(1) 
 



1 + 𝝐 -MST in 𝐑 = 𝑂(1)  rounds  

Theorem: Let 𝒍 = # levels in a random tree P 
𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓  

Proof (sketch):  
• 𝚫𝑷(𝑢, 𝑣) = cell length, which first partitions (𝑢, 𝑣) 

• New weights: 𝒘𝑷 𝑢, 𝑣 = 𝑢 − 𝑣
2
+ 𝝐𝚫𝑷 𝑢, 𝑣  

 
𝑢 − 𝑣

2
≤ 𝔼𝑷,𝒘𝑷 𝑢, 𝑣 - ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢 − 𝑣

2
 

 
• Our algorithm implements Kruskal for weights 𝒘𝑷 

𝑢 𝑣 

𝚫𝑷 𝑢, 𝑣  



Technical Details 

(1 + 𝜖)-MST: 

– “Load balancing”: partition the tree into parts of the 
same size 

– Almost linear time locally: Approximate Nearest 
Neighbor data structure *Indyk’99+ 

– Dependence on dimension d (size of 𝝐-net is 𝑂
𝒅

𝝐

𝒅
) 

– Generalizes to bounded doubling dimension 

 
 

 


