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Linear sketching with parities

Input x € {0,1}"

Parity = Linear function over GF,: @;cs X;

E.8. x4 D X D x4

Deterministic linear sketch: set of k parities:
£(x) = D es, Xis Di,es, Xiys s Diges, Xi,

Randomized linear sketch: distribution over k

parities (random 54, S5,, ..., Si):

f(x) — @ileSl xll; @izeSZ xlz; "'; @ikESk xlk



Linear sketching over GF,

* Given f(x):{0,1}" - {0,1}
* Question:

Can one recover f(x) from a small (k < n) linear
sketch over GF,?

e Allow randomized computation (99% success)
— Probability over choice of random sets
— Sets are known at recovery time
— Recovery is deterministic (also consider randomized)



Motivation: Distributed Computing

* Distributed computation among M machines:
—x = (x4, X3, ..., %) (more generally x =@/, x;)

— M machines can compute sketches locally:
'g(xl)i T 'g(xM)
— Send them to the coordinator who computes:

Li(x) =4;(x1) D - D ¥;(x;;) (coordinate-wise XORs)
— Coordinator computes f(x) with kM communication

x RO 1 o 0o o o
X1 X2



Motivation: Streaming

* x generated through a sequence of updates
* Updates iy, ..., i,,;: update i; flips bit at position i;

£(x) allows to recover f(x) with k bits of space



Deterministic vs. Randomized

* Fact: f has a deterministic sketch if and only if

—f=9(Dies, Xi;Dies, Xi,5 3D es, Xiy,)
— Equivalent to “f has Fourier dimension k"
 Randomization can help:

—OR: f(x) =x, V- Vxy,

— Has “Fourier dimension” = n

— Pick t = log1/6 random sets Sy, ..., S;

— If there is j such that @iesj x; = 1 output 1,
otherwise output O

— Error probability 6



Fourier Analysis

o f(xq, ., x7):{0,1}* = {0,1}
 Notation switch:

—0-1
- 1--1

e f1{—11}" > {-1,1}
* Functions as vectors form a vector space:

f{i-1L1" > {-1,1} e fe{-1,1}*

* |nner product on functions = “correlation”:

(F.90=2" ) fRIO) = Exianlf()g00]

xe{—1,1}"

1l 2 =V, ) = JEx~{-1,1}n [f%(x)] = 1 (for Boolean only)




“Main Characters” are Parities

* For § C [n] let character ys(x) = [1;c5 x;

* Fact: Every function f:{—1,1}" —» {—1,1}
uniquely represented as multilinear polynomial

fG ) = ) F)xs(0)
SCn]

* f(S) a.k.a. Fourier coefficient of f on S

* £(S) = (fixs) = Exomr i [fO)xs(x)]
« Y. f(5)? = 1 (Parseval)



Fourier Dimension

* Fourier sets S = vectors in GF!

* “f has Fourier dimension k" = a k-dimensional
subspace in Fourier domain has all weight

PSS!

SCAy

(CTESE Z FOxs@ = ) FOxs(o

SCA|

* Pick a basis 54, ... Sk in Aj:

— Sketch: x5, (X), ..., X5, (%)
— Forevery S € A, thereexists Z C |k]: S =@z S;

Xs(x) =Diez Xs,(x)



Deterministic Sketching and Noise

Suppose “noise” has a bounded norm
f = k-dimensional @ “noise”
e Sparse Fourier noise (via [Sanyal’15])
— f = k-dim. + “Fourier L,-noise”
— “n/oﬁe‘ ‘o = # non-zero Fourier coefficients of noise

(aka “Fourier sparsity”)
1/2
— Linear sketch size: k + 0(‘ ‘noise” )
0

— Our work: can’t be improved even with randomness and
even for uniform x, e.g for "addressing function”.



How Randomization Handles Noise

* Ly-noise in original domain (via hashing a la OR)
— f = k-dim. + “Ly-noise”
— Linear sketch size: k + O(log Hnoisel ‘O)
— Optimal (but only existentially, i.e. 3f: ...)

* Ly-noise in the Fourier domain (via [Grolmusz'97])

— f = k-dim. + “Fourier L;-noise”

2
— Linear sketch size: k + O(Mnoise“ )
1

— Example = k-dim. + small decision tree / DNF / etc.



Randomized Sketching: Hardness

* k -dimensional affine extractors require k:

— f is an affine-extractor for dim. k if any restriction on a
k-dim. affine subspace has values 0/1 w/prob. = 0.1 each
— Example (inner product): f(x) = @?ﬁ Xoi_1Xo;
* Not y-concentrated on k -dim. Fourier subspaces

— For V k -dim. Fourier subspace A :

Y F?z1-y
S¢ZA

— Any k -dim. linear sketch makes error %7

— Converse doesn’t hold, i.e. concentration is not enough



Randomized Sketching: Hardness

* Not y-concentrated on o(n)-dim. Fourier
subspaces:
— Almost all symmetric functions, i.e. f(x) = h(}; x;)

* If not Fourier-close to constant or @}, x;
* E.g. Majority (not an extractor even for O(y/n))

— Tribes (balanced DNF)
— Recursive majority: Maj°* = Maj; o Majs ...o Majs



Approximate Fourier Dimension

* Not y-concentrated on k -dim. Fourier subspaces
— V k -dim. Fourier subspace A: },¢¢ 4 ]Ac(S)2 >1—-vy
— Any k -dim. linear sketch makes error (1 — /y)

* Definition (Approximate Fourier Dimension)

— dim,, (f) = smallest d such that f is y-concentrated
on some Fourier subspace of dimension d

Si 48 e f(S1+ S, +53)
{(/1%"’3)"_ :73

f(gl)//’/ /TS, +,533' ,':




Sketching over Uniform Distribution +
Approximate Fourier Dimension

e Sketching error over uniform distribution of x.

* dim.(f)-dimensional sketch gives error 1 — €:
— Fix dim,(f)-dimensional A:Y.cc, f(8)? =€

— Output: g(x) = sign(ZSEA f(S))(S(x)):

— > —
x~U(Er1’1}n)[g(x) f(x)]=e>errorl—e

. . 1—€
e \We show a basic refinement = errorT 1[

— Pick 0 from a carefully chosen distribution 3
— Output: gy (x) = sign(Tsea f(S)xs(x) - 6)

+1



1-way Communication Complexity of
XOR-functions

Shared randomness

Alice: x € {V \ Bob: y € {0,1}"
AV
A A

» Examples: [ffF=fx®y)
* f(z) = OR{=,(z;) = (not) Equality
* f(z) = (HZHO> d) = Hamming Distance > d

* RI(f*) =min.|[M| so that Bob’s error prob. €




Communication Complexity of
XOR-functions

* Well-studied (often for 2-way communication):
— [Montanaro,Osborne], ArXiv’'09
— [Shi, Zhang], QIC’09,
— [Tsang, Wong, Xie, Zhang], FOCS’13
— [O’Donnell, Wright, Zhao,Sun,Tan], CCC'14
— [Hatami, Hosseini, Lovett], FOCS'16

* Connections to log-rank conjecture [Lovett’14]:
— Even special case for XOR-functions still open



Deterministic 1-way Communication
Complexity of XOR-functions

Alice: x € {0,1}" Bob: y € {0,1}"
AV
A A
ff=fxDy)

e D1(f) = min.|M| so that Bob is always correct

» [Montanaro-Osborne’09]: D1(f) = D" (f)

« DUM(f*) = deterministic lin. sketch complexity of f*
» DI(f) = D" (f*) = Fourier dimension of f



1-way Communication Complexity of
XOR-functions

Shared randomness

Alice: x € {V \ Bob: y € {0,1}"
A——V
B A

f(xDy)
* RI(f) = min.|M| so that Bob’s error prob. €

* RUM(f*) = rand. lin. sketch complexity (error € )

* RE(fH) < RE™M(S) |
 Question: R (f") =~ RE*(f)?




Re(f7) = REM(f)?

Holds for:

* Majority, Tribes, recursive majority, addressing
function

e Linear threshold functions

e (Almost all) symmetric functions

* Degree-d IF,-polynomials:
REZ(f) = O(d RE(FH))

Analogous question for 2-way is wide open:
[HHU'16] Q2™ () = poly(R.(f1))?



Distributional 1-way Communication
under Uniform Distribution

Alice: x ~ U({0,1}™) Bob: y ~ U({0,1}")

M(x)
\

f(xDy)

* RI(f) = sup D (f)

. fbi’u(f) = min.|M| so that Bob’s error prob. € is over
the uniform distribution over (x, y)

* Enough to consider deterministic messages only
* Motivation: streaming/distributed with random input



Sketching over Uniform Distribution

Thm: If dim (f) = d — 1 then D7 (f+)

1
e Optimal up to error as d-dim. linear sketch has error TE

Weaker: If €; > €4,dim, (f) = dim,, (f) =d — 1 then:
Dy (f) = d,
where 6 = (€, — €1) /4.

Corollary: If f(@) < C for C < 1 then there exists d:
1,U
509(%) (f) = d.

* Tight for the Majority function, etc.




201 Y and Approximate Fourier Dimension

Thm:Ife; > €4 > 0,dim, (f) = dim, (f) = d — 1 then:
Dy (f) = d,
where 6 = (€, — €1) /4.

y €{0,1}" fx@y)=f()
f
f
fx3

x € {0, 1}" M(x) =




201 Y and Approximate Fourier Dimension

« If|M(x)| = d — 1 average “rectangle” size = 2"~ 4+1
* A subspace A distinguishes x; and x5 if:

A8 € A xs(xq) # xs(x2)

* Lem 1: Fix a d-dim. subspace A,: typical x; and x5 in a
typical “rectangle” are distinguished by A,

* Lem 2: If a d-dim. subspace A4, distinguishes x; and x, +
1) f is €5-concentrated on A,
2) f not €1-concentrated on any (d — 1)-dim. subspace

= z~U({ 1 1}n)[fx1(z) i fxz (Z)] = €3 — €1



201 Y and Approximate Fourier Dimension

Thm:Ife; > €4 > 0,dim, (f) = dim, (f) =d — 1 then:

o (f) = d,
Where 6 = (€, — €1) /4.

[fxl(Z) e fxz(Z)] = €2 — €4

y

Z~U({ 1 ,111)

gx1

g R ="typical

rectangle”

Error for fixed y = min( Pr [f,(y) = 0], Pr[f,.(y) = 1])
XER XER
Average error for (x, y)€E R = (€5 — €1)




Application: Random Streams

x € {0,1}" generated via a stream of updates
— Each update flips a random coordinate

Goal: maintain f(x) during the stream (error €)
Question: how much space necessary?

Answer: fbi’U and best algorithm is linear sketch
— After first O(n log n) updates input x is uniform
Big open question:

— |s the same true if x is not uniform?
Q(n)

— True for VERY LONG (22° ) streams (via [LNW’14])
— How about short ones?
— Answer would follow from our conjecture if true



Thanks! Questions?

e Other stuff:

— Sketching Linear Threshold Functions: O (%108%)

— Resolves a communication conjecture of [MO’09]

* Blog post: http://grigory.us/blog/the-binary-sketchman
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Example: Majority

Majority function:

Maj,(z1,...,2,) = Xi-1z; =n/2
Maj.,,(S) only depends on |S]
Maj,(S) = 0if |S| is odd

] — _3 1
W Majy,) = Y. 5= Maj,(S) = ak™z (1 + 0 (E))
(n — 1)-dimensional subspace with most weight:

Ap-1 = span(i1},12}, ..., {n — 1})

Ysen, , Majn($) = 1 -+ 0(n"%2)

Sete, = 1—0(n™/2), ¢, = 1= L+ 0(n"%2)

1,U :
500(1/\/5) (Maj,) =n



