Fast Fourier Sparsity Testing over the Boolean Hypercube

Grigory Yaroslavtsev

http://grigory.us

Joint with Andrew Arnold (Waterloo), Arturs Backurs (MIT), Eric Blais (Waterloo) and Krzysztof Onak (IBM).

Fourier Analysis

- $f(x_1, ..., x_n): \{0,1\}^n \to \mathbb{R}$
- Notation switch:
 - $-0 \rightarrow 1$
 - $-1 \rightarrow -1$
- $f': \{-1,1\}^n \to \mathbb{R}$
- Functions as vectors form a vector space:

$$f: \{-1,1\}^n \to \mathbb{R} \Leftrightarrow f \in \mathbb{R}^{2^n}$$

Inner product on functions = "correlation":

$$\langle f, g \rangle = 2^{-n} \sum_{x \in \{-1,1\}^n} f(x) g(x) = \mathbb{E}_{x \sim \{-1,1\}^n} [f(x) g(x)]$$

•
$$||\boldsymbol{f}||_2 = \sqrt{\langle f, f \rangle} = \sqrt{\mathbb{E}_{x \sim \{-1,1\}^n}[\boldsymbol{f}^2(x)]}$$

Fourier Analysis

- For $S \subseteq [n]$ let character $\chi_S(x) = \prod_{i \in S} x_i$
- Fact: Every function $f: \{-1,1\}^n \to \mathbb{R}$ can be uniquely represented as a multilinear polynomial

$$f(x_1, \dots, x_n) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x)$$

- $\hat{f}(S)$ = Fourier coefficient of f on $S = \langle f, \chi_S \rangle$
- Parseval's Thm: For any $f: \{-1,1\}^n \to \mathbb{R}$

$$\langle \boldsymbol{f}, \boldsymbol{f} \rangle = \mathbb{E}_{\boldsymbol{x} \sim \{-1,1\}^n} [\boldsymbol{f}^2(\boldsymbol{x})] = \sum_{\boldsymbol{S} \subseteq [n]} \hat{\boldsymbol{f}}(\boldsymbol{S})^2$$

PAC-style learning

- **PAC**-learning under uniform distribution: for a class of functions C, given access to $f \in C$ and ϵ find a hypothesis h such that $\Pr_{x \sim \{-1,1\}^n}[f(x) \neq h(x)] \leq \epsilon$
- Query model :
 - -(x, f(x)), for any $x \in \{-1,1\}^n$
- Fourier analysis helps because of sparsity in Fourier spectrum
 - Low-degree concentration
 - Concentration on a small number of Fourier coefficients

Fourier Analysis and Learning

Def (Fourier Concentration): Fourier spectrum of $f: \{-1,1\}^n \to \mathbb{R}$ is ϵ -concentrated on a collection of subsets \mathbb{F} if:

$$\sum_{\mathbf{S}\subseteq[n],\mathbf{S}\in\mathbf{F}}\hat{f}(\mathbf{S})^2\geq 1-\epsilon$$

Sparse Fourier Transform [Goldreich-Levin/Kushilevitz-Mansour]: Class C which is ϵ -concentrated on k sets can be PAC-learned with $kn poly\left(\frac{1}{\epsilon}\right)$ queries:

$$\operatorname{dist}(\boldsymbol{f},\boldsymbol{h}) = \left| |\boldsymbol{f} - \boldsymbol{h}| \right|_2 = \sqrt{\mathbb{E}_{\boldsymbol{\chi} \sim \{-1,1\}^n}[(\boldsymbol{f} - \boldsymbol{h})^2(\boldsymbol{\chi})]} \leq \boldsymbol{\epsilon}$$

Testing Sparsity in ℓ_2

Property Tester

NO

 $\Rightarrow \frac{\text{Accept with}}{\text{probability} \ge \frac{2}{3}}$

 $\Rightarrow \frac{\text{Reject with}}{\text{probability} \ge \frac{2}{3}}$

 ϵ -close : dist(f,k-sparse)=

Tolerant Property Tester

 $\Rightarrow \frac{\text{Accept with}}{\text{probability} \ge \frac{2}{3}}$

€₁-close

$$(\epsilon_1, \epsilon_2)$$
-close

→ Don't care

 $\Rightarrow \frac{\text{Reject with}}{\text{probability} \ge \frac{2}{3}}$

$$\inf_{g \in \mathbf{k}\text{-sparse}} d$$

 $dist(\boldsymbol{f},\boldsymbol{g}) \leq \boldsymbol{\epsilon}$

Previous work under Hamming

- Testing sparsity of Boolean functions under Hamming distance
 - [Gopalan,O'Donnell,Servedio,Shiplka,Wimmer'11
 - Non-tolerant test
 - Complexity $O\left(k^{14}\log k + \frac{k^6}{\epsilon^2\log k}\right)$
 - Reduction to testing under ℓ_2
 - Lower bound $\Omega(\sqrt{k})$
 - [Yoshida, Wimmer'13]
 - Tolerant test
 - Complexity $poly\left(k, \frac{1}{\epsilon}\right)$
- Our results give a tolerant test with almost quadratic improvement on [GOSSW'11]

Pairwise Independent Hashing

Pairwise Fourier Hashing [FGKP'09]

= Cosets of a random linear subspace of F_2^n

= f_b \equiv Projection of f on the coset

"Energy" =
$$||f||_2^2 = \sum_b ||f_b||_2^2$$

Testing k-sparsity [GOSSW'11]

$$\# = O(k^2) \Rightarrow \emptyset$$

- Fact: $O\left(\frac{\log_{\delta}^{\frac{1}{\delta}}}{\epsilon}\right)$ random samples from f suffice to estimate $\left|\left|f_{b}\right|\right|_{2}^{2}$ up to $\pm\epsilon$ with prob. $\geq 1-\delta$
- Algorithm: Estimate all projections up to $\pm \epsilon^2/k^4$ with probability $1 O\left(\frac{1}{k^2}\right)$
- Complexity: $O\left(\frac{k^6 \log k}{\epsilon^4}\right)$, only non-tolerant

Our Algorithm

- Take # cosets $\mathbf{B} = O\left(\frac{k}{\epsilon^8}\right)$
- Let $oldsymbol{m_b^i}$ be a random sample from $oldsymbol{f_b}$
- For a coset $m{b}$ let $m{z_b} = \text{median}(m{m_b^1}, ..., m{m_b^u})$, where $m{u} = O(\log m{B})$
- Output $\max_{S\subseteq[t],|S|=k}\sum_{b\in S}\mathbf{z_b}$
- Complexity: $O\left(\frac{k}{\epsilon^8}\log\frac{k}{\epsilon}\right)$
- Fact: The "median estimators" suffice to estimate all $||f_b||_2^2$ up to $\pm \epsilon$

Analysis

- Take # cosets $\mathbf{B} = O\left(\frac{k}{\epsilon^8}\right)$
- Let $oldsymbol{m_b^i}$ be a random sample from $oldsymbol{f_b}$
- For a coset $m{b}$ let $m{z_b} = \text{median}(m{m_b^1}, ..., m{m_b^u})$, where $m{u} = O(\log m{t})$
- Output $\max_{S\subseteq[t],|S|=k}\sum_{b\in S}\mathbf{z_b}$
- Two main challenges
 - Top-k coefficients may collide
 - Noise from non top-k coefficients

Analysis: Large coefficients

Lemma: Fix $\tau = \frac{\zeta}{8k}$. If all coefficients are $\geq \tau$ then for $O\left(\frac{k}{\tau^2}\right)$ buckets the weight in buckets with collisions $\leq \frac{\zeta}{2}$

Proof:

- # coefficients $\leq 1/\tau$
- Pr[coefficient *i* collides] $\leq \frac{1}{B\tau} \leq \frac{\zeta}{4}$
- By Markov w.p. $\frac{1}{2}$ the colliding weight $\leq \frac{\zeta}{2}$

Analysis: Small coefficients

Lemma: Fix $\tau = \frac{\zeta}{\Omega k}$. If all coefficients are $\leq \tau$ then for

- $O\left(\frac{k}{\zeta^2}\right)$ buckets the weight in any subset of size k is $\leq \frac{\zeta}{2}$
- "Light buckets" with weight $\leq 2\tau$ contribute $\leq \zeta/4$
- "Heavy buckets" contribute $Z = \sum_{j \in [k']} Z_j$:
 - Weighted # collisions $W = \sum_b \sum_{i \neq i' \in b} w_i w_i$,
 - $\mathbb{E}[W] = B \sum_{i \neq i'} \frac{w_i w_{i'}}{B^2} \le \frac{1}{B} (\sum w_i)^2 \le \frac{1}{B}$
 - Each w_j in a "heavy bucket" Z_i contributes $\geq \frac{Z_i}{2}$ to W

• Overall:
$$W \ge \frac{k'}{2} \left(\frac{Z}{k'}\right)^2 \ge \frac{Z^2}{2k} \Rightarrow Z \le \sqrt{\frac{2k}{B}}$$

Analysis: Putting it together

Lemma: If the previous two lemmas hold then the ℓ_2^2 -error of the algorithm is at most $\sqrt{\zeta}$

- $\sqrt{\zeta}$ instead of ζ because of error in singleton heavy coefficients
- Crude bound because of pairwise independence + Cauchy-Schwarz

If
$$\zeta = O(\epsilon^4) \Rightarrow \mathbf{B} = O(k/\epsilon^8)$$
 and ℓ_2^2 -error ϵ^2

Other results + Open Problems

- Our result: $O\left(\frac{k}{\epsilon^2} \log k + \frac{1}{\epsilon^4}\right)$ non-tolerant test
 - Using BLR-test to check linearity of projections
- Lower bound of [GOSSW'11] is $\Omega(\sqrt{k})$
- Extensions to other domains
 - Sparse FFT on the line [Hassanieh, Indyk, Katabi, Price'12]
 - Sparse FFT in d dimensions [Indyk, Kapralov'14]
- Other properties that can be tested in ℓ_2 ?
 - Monotonicity, Lipschitzness, convexity [Berman, Raskhodnikova, Y. '14]