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Fourier Analysis 
• 𝒇(𝑥1, … , 𝑥𝑛): 0,1 𝑛 → ℝ 
• Notation switch: 

– 0 → 1 

– 1 → −1 

• 𝒇′: −1,1 𝑛 → ℝ 
• Functions as vectors form a vector space: 

𝒇: −1,1 𝑛 → ℝ ⇔ 𝒇 ∈ ℝ2𝑛
 

• Inner product on functions = “correlation”: 

𝒇, 𝒈 = 2−𝑛  𝒇 𝑥 𝒈(𝑥)

𝑥∈ −1,1 𝑛

= 𝔼𝑥∼ −1,1 𝑛 𝒇 𝑥 𝒈 𝑥  

• 𝒇  2 = 𝑓, 𝑓 = 𝔼𝑥∼ −1,1 𝑛 𝒇2 𝑥  

 
 



Fourier Analysis 

• For 𝑺 ⊆ [𝑛] let character 𝝌𝑺(𝑥) =  𝑥𝑖𝑖∈𝑺  

• Fact: Every function 𝒇: −1,1 𝑛 → ℝ can be 
uniquely represented as a multilinear polynomial 

𝒇 𝑥1, … , 𝑥𝑛 =  𝒇 𝑺 𝝌𝑺(𝑥)

𝑺⊆[𝑛]

 

• 𝒇 𝑺  ≡ Fourier coefficient of 𝒇 on 𝑺 = 〈𝒇, 𝝌𝑺〉 

• Parseval’s Thm: For any 𝒇: −1,1 𝑛 → ℝ 

𝒇, 𝒇 = 𝔼𝑥∼ −1,1 𝑛 𝒇2 𝑥 =  𝒇 𝑺 𝟐

𝑺⊆[𝑛]

 

 



PAC-style learning 

• PAC-learning under uniform distribution: for a class 
of functions 𝑪, given access to 𝒇 ∈ 𝑪 and 𝝐 find a 
hypothesis 𝒉 such that Pr

𝑥∼ −1,1 𝑛
[𝒇 𝑥 ≠ 𝒉(𝑥)] ≤ 𝝐 

• Query model : 

– (𝑥, 𝒇(𝑥)), for any 𝑥 ∈ −1,1 𝑛 

• Fourier analysis helps because of sparsity in Fourier 
spectrum 

– Low-degree concentration 

– Concentration on a small number of Fourier coefficients 

 



Fourier Analysis and Learning 
Def (Fourier Concentration): Fourier spectrum of 
𝒇: −1,1 𝑛 → ℝ is 𝝐-concentrated on a collection 
of subsets 𝔽 if: 

 𝒇 𝑺 2 ≥ 1 − 𝝐

𝑺⊆ 𝑛 ,𝑺∈𝔽

 

Sparse Fourier Transform [Goldreich-Levin/Kushilevitz-

Mansour]:  Class 𝐶 which is 𝝐-concentrated on k sets 

can be PAC-learned with k 𝑛 𝑝𝑜𝑙𝑦
1

𝜖
  queries: 

dist 𝒇, 𝒉 = 𝒇 − 𝒉
2
= 𝔼𝑥∼ −1,1 𝑛 (𝒇 − 𝒉)2 𝑥  ≤ 𝝐  

 



Testing Sparsity in ℓ2 

𝝐-close : dist(𝒇,k-sparse)= inf
𝒈∈k−sparse

𝑑𝑖𝑠𝑡(𝒇, 𝒈) ≤ 𝝐 

⇒ 

k-
sparse 

NO 

Property Tester 

𝝐-close 

Accept with 

probability ≥
𝟐

𝟑
 

Reject with 

probability ≥
𝟐

𝟑
 

⇒ 

⇒ 

Don’t care 

⇒ 

Tolerant Property Tester 

Accept with 

probability ≥
𝟐

𝟑
 

Reject with 

probability ≥
𝟐

𝟑
 

⇒ 

⇒ 

Don’t care 

NO 

𝝐𝟏-close 

(𝝐𝟏, 𝝐𝟐)-close 

k-
sparse 



Previous work under Hamming  

• Testing sparsity of Boolean functions under 
Hamming distance 
– [Gopalan,O’Donnell,Servedio,Shiplka,Wimmer’11 

• Non-tolerant test 

• Complexity 𝑂 𝑘14 log 𝑘 +
𝑘6

𝝐2 log 𝑘
 

• Reduction to testing under ℓ2 

• Lower bound Ω( 𝑘) 

– [Yoshida, Wimmer’13]  
• Tolerant test 

• Complexity 𝑝𝑜𝑙𝑦 𝑘,
1

𝝐
 

• Our results give a tolerant test with almost 
quadratic improvement on [GOSSW’11]  

 



Pairwise Independent Hashing 

∀ 𝑺, 𝑻 Pr ℎ 𝑺 = 𝑎, ℎ 𝑻 = 𝑏
= Pr ℎ 𝑺 = 𝑎 Pr [ℎ 𝑻 = 𝑏] 



Pairwise Fourier Hashing [FGKP’09] 

= Cosets of a random linear 
subspace of 𝑭𝟐

𝒏 

= 𝒇𝒃 ≡ Projection of 𝒇 on the 
coset 

"Energy" = 𝒇
2

2
=  𝒇𝑏 2

2

𝑏

 



Testing k-sparsity [GOSSW’11] 

#  =  𝑂 𝑘2 ⇒ 

• Fact: 𝑂
log

1

𝜹

𝝐
  random samples from 𝒇 suffice 

to estimate 𝒇𝒃 2

2
 up to ±𝝐 with prob. ≥ 1 − 𝜹 

• Algorithm: Estimate all projections up to 

± 𝝐2/𝑘4 with probability 1 –  𝑂
1

𝑘2  

• Complexity: 𝑂
𝑘6log 𝑘

𝝐4
, only non-tolerant 



Our Algorithm 

• Take # cosets  B = 𝑂
𝑘

𝝐8
 

• Let 𝒎𝒃
𝒊  be a random sample from 𝒇𝒃 

• For a coset 𝒃 let 𝒛𝒃 = median(𝒎𝒃
𝟏, … ,𝒎𝒃

𝒖), where 
 𝒖 = 𝑂 log 𝑩  

• Output max
𝑆⊆ 𝑡 , 𝑆 =𝑘

 𝒛𝒃𝑏∈𝑆  

• Complexity: 𝑂
𝑘

𝝐8
 log

𝑘

𝝐
 

• Fact: The “median estimators” suffice to estimate 

all 𝒇𝒃 2

2
 up to ±𝝐  



Analysis 

• Two main challenges 

– Top-k coefficients may collide 

– Noise from non top-k coefficients 

 

• Take # cosets  B = 𝑂
𝑘

𝝐8
 

• Let 𝒎𝒃
𝒊  be a random sample from 𝒇𝒃 

• For a coset 𝒃 let 𝒛𝒃 = median(𝒎𝒃
𝟏, … ,𝒎𝒃

𝒖), where 
 𝒖 = 𝑂 log 𝒕  

• Output max
𝑆⊆ 𝑡 , 𝑆 =𝑘

 𝒛𝒃𝑏∈𝑆  



Analysis: Large coefficients 

Lemma: Fix 𝜏 =
𝜁

8𝑘
. If all coefficients are ≥ 𝜏 then for 

𝑂
𝑘

𝜁2  buckets the weight in buckets with collisions ≤
𝜁

2
 

Proof: 

• # coefficients ≤ 1/𝜏 

• Pr[coefficient 𝑖 collides] ≤
1

𝐵𝜏
≤

𝜁

4
 

• By Markov w.p. 
1

2
 the colliding weight ≤

𝜁

2
 



Analysis: Small coefficients 

Lemma: Fix 𝜏 =
𝜁

8𝑘
. If all coefficients are ≤ 𝜏 then for 

𝑂
𝑘

𝜁2  buckets the weight in any subset of size 𝑘 is ≤
𝜁

2
  

– “Light buckets” with weight ≤ 2𝜏 contribute ≤ 𝜁/4 

– “Heavy buckets” contribute 𝑍 =  𝑍𝑗𝑗∈[𝑘′] :  

• Weighted # collisions W =   𝑤𝑖𝑤𝑖′𝑖≠𝑖′∈𝑏𝑏  

• 𝔼 𝑊 = 𝐵 
𝑤𝑖𝑤𝑖′

𝐵2 ≤
1

𝐵
 𝑤𝑖

2 ≤
1

𝐵𝑖≠𝑖′  

• Each 𝑤𝑗  in a “heavy bucket” 𝑍𝑖  contributes ≥
𝑍𝑖

2
 to 𝑊 

• Overall: 𝑊 ≥
𝑘′

2

𝑍

𝑘′

2
≥

𝑍2

2𝑘
⇒ 𝑍 ≤

2𝑘

𝐵
 

 

 

 



Analysis: Putting it together 

Lemma: If the previous two lemmas hold then the 

ℓ2
2-error of the algorithm is at most 𝜁 

• 𝜁 instead of 𝜁 because of error in singleton 
heavy coefficients 

• Crude bound because of pairwise independence 
+ Cauchy-Schwarz 

 

If 𝜁 = 𝑂 𝜖4 ⇒ B = 𝑂(𝑘/𝝐8) and ℓ2
2-error 𝝐2 

  



Other results + Open Problems 

• Our result: 𝑂
𝑘

𝝐2
 log 𝑘 +

1

𝝐4
 non-tolerant test 

– Using BLR-test to check linearity of projections 

• Lower bound of [GOSSW’11] is Ω( 𝑘) 

• Extensions to other domains  
– Sparse FFT on the line [Hassanieh, 

Indyk,Katabi,Price’12] 

– Sparse FFT in d dimensions [Indyk, Kapralov’14] 

• Other properties that can be tested in ℓ2? 
– Monotonicity, Lipschitzness, convexity [Berman, 

Raskhodnikova, Y. ‘14] 


